Deed R W, Hara E, Atherton G T, Peters G, Norton J D
CRC Department of Gene Regulation, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Manchester, United Kingdom.
Mol Cell Biol. 1997 Dec;17(12):6815-21. doi: 10.1128/MCB.17.12.6815.
The functions of basic helix-loop-helix (bHLH) transcription factors in activating differentiation-linked gene expression and in inducing G1 cell cycle arrest are negatively regulated by members of the Id family of HLH proteins. These bHLH antagonists are induced during a mitogenic signalling response, and they function by sequestering their bHLH targets in inactive heterodimers that are unable to bind to specific gene regulatory (E box) sequences. Recently, cyclin E-Cdk2- and cyclin A-Cdk2-dependent phosphorylation of a single conserved serine residue (Ser5) in Id2 has been shown to occur during late G1-to-S phase transition of the cell cycle, and this neutralizes the function of Id2 in abrogating E-box-dependent bHLH homo- or heterodimer complex formation in vitro (E. Hara, M. Hall, and G. Peters, EMBO J. 16:332-342, 1997). We now show that an analogous cell-cycle-regulated phosphorylation of Id3 alters the specificity of Id3 for abrogating both E-box-dependent bHLH homo- or heterodimer complex formation in vitro and E-box-dependent reporter gene function in vivo. Furthermore, compared with wild-type Id3, an Id3 Asp5 mutant (mimicking phosphorylation) is unable to promote cell cycle S phase entry in transfected fibroblasts, whereas an Id3 Ala5 mutant (ablating phosphorylation) displays an activity significantly greater than that of wild-type Id3 protein. Cdk2-dependent phosphorylation therefore provides a switch during late G1-to-S phase that both nullifies an early G1 cell cycle regulatory function of Id3 and modulates its target bHLH specificity. These data also demonstrate that the ability of Id3 to promote cell cycle S phase entry is not simply a function of its ability to modulate bHLH heterodimer-dependent gene expression and establish a biologically important mechanism through which Cdk2 and Id-bHLH functions are integrated in the coordination of cell proliferation and differentiation.
碱性螺旋-环-螺旋(bHLH)转录因子在激活分化相关基因表达和诱导G1期细胞周期停滞方面的功能受到HLH蛋白Id家族成员的负调控。这些bHLH拮抗剂在有丝分裂信号应答过程中被诱导产生,它们通过将其bHLH靶点隔离在无活性的异二聚体中来发挥作用,这些异二聚体无法结合特定的基因调控(E盒)序列。最近研究表明,在细胞周期从G1晚期到S期转变过程中,Id2中一个保守的丝氨酸残基(Ser5)会发生细胞周期蛋白E-Cdk2和细胞周期蛋白A-Cdk2依赖性磷酸化,这在体外消除了Id2在废除E盒依赖性bHLH同源或异二聚体复合物形成方面的功能(E. Hara、M. Hall和G. Peters,《欧洲分子生物学组织杂志》16:332 - 342,1997年)。我们现在发现,Id3类似的细胞周期调节性磷酸化改变了Id3在体外废除E盒依赖性bHLH同源或异二聚体复合物形成以及在体内废除E盒依赖性报告基因功能的特异性。此外,与野生型Id3相比,Id3 Asp5突变体(模拟磷酸化)在转染的成纤维细胞中无法促进细胞周期进入S期,而Id3 Ala5突变体(消除磷酸化)显示出比野生型Id3蛋白显著更高的活性。因此,Cdk2依赖性磷酸化在G1晚期到S期提供了一个开关,既消除了Id3在G1早期的细胞周期调节功能,又调节了其靶点bHLH的特异性。这些数据还表明,Id3促进细胞周期进入S期的能力不仅仅是其调节bHLH异二聚体依赖性基因表达能力的函数,还建立了一种生物学上重要的机制,通过该机制Cdk2和Id - bHLH功能在细胞增殖和分化的协调中得以整合。