Athenstaedt K, Weys S, Paltauf F, Daum G
Institut für Biochemie und Lebensmittelchemie, Technische Universität, and SFB Biomembrane Research Center, Petersgasse 12/2, A-8010 Graz, Austria.
J Bacteriol. 1999 Mar;181(5):1458-63. doi: 10.1128/JB.181.5.1458-1463.1999.
In the yeast Saccharomyces cerevisiae lipid particles harbor two acyltransferases, Gat1p and Slc1p, which catalyze subsequent steps of acylation required for the formation of phosphatidic acid. Both enzymes are also components of the endoplasmic reticulum, but this compartment contains additional acyltransferase(s) involved in the biosynthesis of phosphatidic acid (K. Athenstaedt and G. Daum, J. Bacteriol. 179:7611-7616, 1997). Using the gat1 mutant strain TTA1, we show here that Gat1p present in both subcellular fractions accepts glycerol-3-phosphate and dihydroxyacetone phosphate as a substrate. Similarly, the additional acyltransferase(s) present in the endoplasmic reticulum can acylate both precursors. In contrast, yeast mitochondria harbor an enzyme(s) that significantly prefers dihydroxyacetone phosphate as a substrate for acylation, suggesting that at least one additional independent acyltransferase is present in this organelle. Surprisingly, enzymatic activity of 1-acyldihydroxyacetone phosphate reductase, which is required for the conversion of 1-acyldihydroxyacetone phosphate to 1-acylglycerol-3-phosphate (lysophosphatidic acid), is detectable only in lipid particles and the endoplasmic reticulum and not in mitochondria. In vivo labeling of wild-type cells with [2-3H, U-14C]glycerol revealed that both glycerol-3-phosphate and dihydroxyacetone phosphate can be incorporated as a backbone of glycerolipids. In the gat1 mutant and the 1-acylglycerol-3-phosphate acyltransferase slc1 mutant, the dihydroxyacetone phosphate pathway of phosphatidic acid biosynthesis is slightly preferred as compared to the wild type. Thus, mutations of the major acyltransferases Gat1p and Slc1p lead to an increased contribution of mitochondrial acyltransferase(s) to glycerolipid synthesis due to their substrate preference for dihydroxyacetone phosphate.
在酿酒酵母中,脂滴含有两种酰基转移酶,即Gat1p和Slc1p,它们催化磷脂酸形成所需的后续酰化步骤。这两种酶也是内质网的组成成分,但该细胞器还含有参与磷脂酸生物合成的其他酰基转移酶(K. 阿滕施泰特和G. 道姆,《细菌学杂志》179:7611 - 7616,1997年)。利用gat1突变株TTA1,我们在此表明,存在于两个亚细胞组分中的Gat1p都能接受3 - 磷酸甘油和磷酸二羟丙酮作为底物。同样,内质网中存在的其他酰基转移酶也能使这两种前体发生酰化。相比之下,酵母线粒体含有一种明显更倾向于以磷酸二羟丙酮作为酰化底物的酶,这表明该细胞器中至少还存在一种独立的酰基转移酶。令人惊讶的是,1 - 酰基磷酸二羟丙酮还原酶的酶活性,即1 - 酰基磷酸二羟丙酮转化为1 - 酰基 - 3 - 磷酸甘油(溶血磷脂酸)所必需的活性,仅在脂滴和内质网中可检测到,而在线粒体中未检测到。用[2 - 3H, U - 14C]甘油对野生型细胞进行体内标记显示,3 - 磷酸甘油和磷酸二羟丙酮都可作为甘油脂质的骨架被掺入。在gat1突变体和1 - 酰基 - 3 - 磷酸甘油酰基转移酶slc1突变体中,与野生型相比,磷脂酸生物合成的磷酸二羟丙酮途径略占优势。因此,主要酰基转移酶Gat1p和Slc1p的突变导致线粒体酰基转移酶对甘油脂质合成的贡献增加,这是由于它们对磷酸二羟丙酮的底物偏好。