Ikeda K, Nagashima T, Wu S, Yamaguchi M, Tamaki N
Department of Neurosurgery, Kobe University School of Medicine, Japan.
Acta Neurochir Suppl. 1997;70:4-7. doi: 10.1007/978-3-7091-6837-0_2.
Capillary endothelial cells are critical targets in both ischemia and reperfusion of the brain. Arachidonic acids and oxygen free radicals have been shown to cause disruption of blood-brain barrier (BBB) by destruction of capillary endothelial cell membrane. However, the exact mechanism of BBB breakdown by cerebral ischemia/reperfusion remains undetermined. The aim of the present study is to clarify the mechanism of intracellular calcium ion ([Ca2+]i) change in brain capillary endothelial cells under anoxia/reoxygenation. Brains capillary endothelial cells were isolated from ten male Sprague-Dawley rats by a two step enzymatic process. [Ca2+]i was measured by means of a confocal laser scanning microscope using Indo 1-A/M as a calcium indicator. The endothelial cells were subjected to anoxia and reoxygenization under different conditions. [Ca2+]i increased gradually during anoxia and slightly decreased after reoxygenation. Indomethacin and SOD suppressed the elevation of [Ca2+]i during anoxia. NG-nitro-L-arginine methyl ester and catalase moderately suppressed the elevation, however nifedipine did not suppress it at all. In this model, rapid [Ca2+]i change was not observed during the reoxygenation phase. The results indicate that the anoxia induced elevation of [Ca2+]i in the brain capillary endothelial cells depends on superoxide and peroxynitrite generation.