Iyengar S, Calafell F, Kidd K K
Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520-8005, USA.
Genet Epidemiol. 1997;14(6):809-14. doi: 10.1002/(SICI)1098-2272(1997)14:6<809::AID-GEPI41>3.0.CO;2-R.
Using the Problem 2A data sets of GAW10, we assessed the power of four ascertainment schemes to localize major genes underlying a disease trait; the schemes were based on disease or quantitative trait status of nuclear families. MAPMAKER/SIBS was used to perform sib-pair analysis for all four data sets using marker data from three chromosomes, 4, 5 and 8. Each scheme varied in power to identify major genes underlying the quantitative traits depending on the genetic architecture of the data set. Three different methods, Haseman-Elston quantitative trait locus (QTL) regression analysis, maximum likelihood variance estimation and a non-parametric method, were used to assess the strength of linkage in all four data sets. False positive mappings localizing to the same region of the genome, verifiable across all three methods did not occur. Two major genes, MG1 and MG2, were successfully assigned to chromosomes 5 and 8, respectively, by at least one of the ascertainment schemes. MG1 was localized under two schemes, selection of families with exactly two affected sibs and selection of families with two sibs who had extremely discordant values for Q1. Additional weak evidence of the location of MG1 was also obtained under the other two ascertainment schemes. MG2 could not be detected by analyzing data sets ascertained either by affected sib pairs or by sib pairs with extremely discordant values for Q1. In the data set ascertained by a third strategy, selection of families with sib pairs extremely discordant for Q2, MG2 could be mapped to chromosome 8. A random ascertainment scheme yielded a data set in which we could find weak evidence for MG1 and no evidence for MG2. Thus our ability to detect major genes underlying the QTL depended on several factors which included the ascertainment scheme, the population allele frequencies, linkage and epistasis.
利用GAW10的问题2A数据集,我们评估了四种确诊方案定位疾病性状潜在主基因的效能;这些方案基于核心家庭的疾病或数量性状状态。使用来自第4、5和8号三条染色体的标记数据,运用MAPMAKER/SIBS软件对所有四个数据集进行同胞对分析。每种方案在识别数量性状潜在主基因的效能上有所不同,这取决于数据集的遗传结构。我们使用三种不同方法——哈斯曼-埃尔斯顿数量性状位点(QTL)回归分析、最大似然方差估计和一种非参数方法,来评估所有四个数据集的连锁强度。未出现定位到基因组同一区域且在所有三种方法中均可验证的假阳性定位。至少有一种确诊方案成功地将两个主基因MG1和MG2分别定位到了第5号和第8号染色体上。在两种方案下定位到了MG1,即选择恰好有两个患病同胞的家庭以及选择其两个同胞在Q1上具有极大差异值的家庭。在另外两种确诊方案下也获得了MG1定位的其他微弱证据。通过分析由患病同胞对或其两个同胞在Q1上具有极大差异值所确诊的数据集,未能检测到MG2。在由第三种策略确诊的数据集(选择其同胞对在Q2上具有极大差异的家庭)中,MG2可被定位到第8号染色体上。一种随机确诊方案产生了一个数据集,在其中我们能找到MG1的微弱证据,但找不到MG2的证据。因此,我们检测QTL潜在主基因的能力取决于几个因素,包括确诊方案、群体等位基因频率、连锁和上位性。