Suppr超能文献

Nitric oxide in hypertension: relationship with renal injury and left ventricular hypertrophy.

作者信息

Raij L

机构信息

Department of Medicine, Veterans Affairs Medical Center and University of Minnesota Medical School, Minneapolis 55417, USA.

出版信息

Hypertension. 1998 Jan;31(1 Pt 2):189-93. doi: 10.1161/01.hyp.31.1.189.

Abstract

Hypertension is accompanied by architectural changes in the kidney, heart, and vessels that are often maladaptive and can eventually contribute to end-organ disease such as renal failure, heart failure, and coronary disease. Nitric oxide, an endogenous vasodilator and antithrombotic agent synthesized in the endothelium by a constitutive nitric oxide synthase, inhibits growth-related responses to injury in vascular cells. Specifically, in the presence of hypertension, nitric oxide may work in the kidney by inhibiting both mesangial cell hypertrophy and hyperplasia as well as synthesis of extracellular matrix and in the heart and systemic vessels by modulating smooth muscle cell hypertrophy and hyperplasia. The effects of nitric oxide are antagonistic of the effects of angiotensin II. Shear stress and cyclic strain, physical forces known to operate in hypertension, are accompanied by increases in endothelial nitric oxide synthase expression, nitric oxide synthase protein, and nitric oxide synthase activity in endothelial cells. Experimental studies using genetic models of hypertension show a variation in hypertension-modulated vascular nitric oxide synthase activity in different strains of rats. These studies suggest that upregulation of vascular nitric oxide synthase activity is a homeostatic adaptation to increased hemodynamic workload in hypertension and that this may help prevent end-organ damage. If these findings apply to humans, differences in end-organ disease seen in patients with similar degrees of hypertension may be due in part to genetic differences in vascular nitric oxide synthase activity in response to hypertension.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验