Suppr超能文献

通过主成分分析和神经网络对星形细胞瘤和恶性星形细胞瘤进行分类。

Classification of astrocytomas and malignant astrocytomas by principal components analysis and a neural net.

作者信息

McKeown M J, Ramsay D A

机构信息

Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037-1099, USA.

出版信息

J Neuropathol Exp Neurol. 1996 Dec;55(12):1238-45. doi: 10.1097/00005072-199612000-00007.

Abstract

The classification of astrocytomas, astrocytomas with anaplastic foci and glioblastoma multiformes is not always straightforward because the tumors form a histological continuum. The use of principal component analysis (PCA) and neural nets in the classification of these tumors is explored. PCA was performed on 14 histological features recorded from 52 gliomas classified by the Radiation Therapy Oncology Group method (17 astrocytomas, 18 astrocytomas with anaplastic foci, 17 glioblastoma multiformes). Four of the 14 possible 'scores' derived from this analysis were selected to summarize the histological variability seen in all the tumors. These scores were mostly significantly different between tumor types and were thus used to successfully train a neural net to correctly classify these tumors. The first principal component (score) supported the use of increasing cellularity, mitoses, endothelial proliferation, and necrosis in differentiating between the tumor categories, but accounted for only 39% of the variability seen. Other histological features that were significant components of the other scores included the presence of multinucleated or giant cells, gemistocytes, atypical mitoses and changes in nuclear chromatin. Computer programs derived from the methodology described provide a way of standardizing glioma diagnosis and may be extended to assist with management decisions.

摘要

星形细胞瘤、具有间变灶的星形细胞瘤和多形性胶质母细胞瘤的分类并不总是简单直接的,因为这些肿瘤形成了一个组织学连续谱。本文探讨了主成分分析(PCA)和神经网络在这些肿瘤分类中的应用。对按照放射治疗肿瘤学组方法分类的52例胶质瘤(17例星形细胞瘤、18例具有间变灶的星形细胞瘤、17例多形性胶质母细胞瘤)记录的14项组织学特征进行了主成分分析。从该分析得出的14个可能的“分数”中选择了4个来总结所有肿瘤中观察到的组织学变异性。这些分数在肿瘤类型之间大多有显著差异,因此被用于成功训练一个神经网络以正确分类这些肿瘤。第一主成分(分数)支持在区分肿瘤类别时使用增加的细胞密度、有丝分裂、内皮细胞增殖和坏死,但仅占观察到的变异性的39%。作为其他分数重要组成部分的其他组织学特征包括多核或巨细胞、肥胖型星形胶质细胞、非典型有丝分裂以及核染色质的变化。源自所述方法的计算机程序提供了一种标准化胶质瘤诊断的方法,并且可能扩展以协助管理决策。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验