Hue O, Le Gallais D, Chollet D, Boussana A, Préfaut C
Centre d'Optimisation de la Performance Motrice, UFR-STAPS, Montpellier, France.
Eur J Appl Physiol Occup Physiol. 1998;77(1-2):98-105. doi: 10.1007/s004210050306.
The aim of the present study was to determine the effects of 40 km of cycling on the biomechanical and cardiorespiratory responses measured during the running segment of a classic triathlon, with particular emphasis on the time course of these responses. Seven male triathletes underwent four successive laboratory trials: (1) 40 km of cycling followed by a 10-km triathlon run (TR), (2) a 10-km control run (CR) at the same speed as TR, (3) an incremental treadmill test, and (4) an incremental cycle test. The following ventilatory data were collected every minute using an automated breath-by-breath system: pulmonary ventilation VE, l x min[-1]), oxygen uptake (VO2, ml x min(-1) x kg[-1]), carbon dioxide output (ml x min[-1]), respiratory equivalents for oxygen (VE/VO2) and carbon dioxide (VE/VCO2), respiratory exchange ratio (R) respiratory frequency (f, breaths x min[-1]), and tidal volume (ml). Heart rate (HR, beats x min[-1]) was monitored using a telemetric system. Biomechanical variables included stride length (SL) and stride frequency (SF) recorded on a video tape. The results showed that the following variables were significantly higher (analysis of variance, P < 0.05) for TR than for CR: VO2 [51.7 (3.4) vs 48.3 (3.9) ml x kg(-1) x min(-1), respectively], VE [100.4 (1.4) l x min(-1) vs 84.4 (7.0) l x min(-1)], VE/VO2 [24.2 (2.6) vs 21.5 (2.7)] VE/VCO2 [25.2 (2.6) vs 22.4 (2.6)], f[55.8 (11.6) vs 49.0 (12.4) breaths x min(-1)] and HR [175 (7) vs 168 (9) beats x min(-1)]. Moreover, the time needed to reach steady-state was shorter for HR and VO2 (1 min and 2 min, respectively) and longer for VE (7 min). In contrast, the biomechanical parameters, i.e. SL and SF, remained unchanged throughout TR versus CR. We conclude that the first minutes of the run segment after cycling in an experimental triathlon were specific in terms of VO2 and cardiorespiratory variables, and nonspecific in terms of biomechanical variables.
本研究的目的是确定40公里自行车骑行对经典铁人三项跑步阶段所测生物力学和心肺反应的影响,尤其着重于这些反应的时间进程。七名男性铁人三项运动员进行了四项连续的实验室试验:(1)40公里自行车骑行后进行10公里铁人三项跑步(TR);(2)与TR速度相同的10公里对照跑步(CR);(3)递增式跑步机测试;(4)递增式自行车测试。使用自动逐次呼吸系统每分钟收集以下通气数据:肺通气量(VE,升/分钟)、摄氧量(VO2,毫升/分钟·千克⁻¹)、二氧化碳排出量(毫升/分钟)、氧呼吸当量(VE/VO2)和二氧化碳呼吸当量(VE/VCO2)、呼吸交换率(R)、呼吸频率(f,次/分钟)和潮气量(毫升)。使用遥测系统监测心率(HR,次/分钟)。生物力学变量包括录像带上记录的步长(SL)和步频(SF)。结果显示,与CR相比,TR的以下变量显著更高(方差分析,P < 0.05):VO2[分别为51.7(3.4)与48.3(3.9)毫升·千克⁻¹·分钟⁻¹]、VE[100.4(1.4)升/分钟与84.4(7.0)升/分钟]、VE/VO2[24.2(2.6)与21.5(2.7)]、VE/VCO₂[25.2(2.6)与22.4(2.6)]、f[55.8(11.6)与49.0(12.4)次/分钟]以及HR[175(7)与168(9)次/分钟]。此外,HR和VO2达到稳态所需时间较短(分别为1分钟和2分钟),而VE所需时间较长(7分钟)。相比之下,TR与CR相比,生物力学参数即SL和SF在整个过程中保持不变。我们得出结论,在实验性铁人三项中,骑行后的跑步阶段最初几分钟在VO2和心肺变量方面具有特异性,而在生物力学变量方面不具有特异性。