Samudrala R, Moult J
Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, 9600, Gudelsky Drive, Rockville, MD 20850, USA.
J Mol Biol. 1998 Feb 6;275(5):895-916. doi: 10.1006/jmbi.1997.1479.
We present a formalism to compute the probability of an amino acid sequence conformation being native-like, given a set of pairwise atom-atom distances. The formalism is used to derive three discriminatory functions with different types of representations for the atom-atom contacts observed in a database of protein structures. These functions include two virtual atom representations and one all-heavy atom representation. When applied to six different decoy sets containing a range of correct and incorrect conformations of amino acid sequences, the all-atom distance-dependent discriminatory function is able to identify correct from incorrect more often than the discriminatory functions using approximate representations. We illustrate the importance of using a detailed atomic description for obtaining the most accurate discrimination, and the necessity for testing discriminatory functions against a wide variety of decoys. The discriminatory function is also shown to be capable of capturing the fine details of atom-atom preferences. These results suggest that the all-atom distance-dependent discriminatory function will be useful for protein structure prediction and model refinement.
给定一组成对的原子间距离,我们提出了一种形式体系来计算氨基酸序列构象为天然样构象的概率。该形式体系用于推导三种具有不同类型表示的判别函数,用于蛋白质结构数据库中观察到的原子间接触。这些函数包括两种虚拟原子表示和一种全重原子表示。当应用于六个不同的诱饵集,这些诱饵集包含一系列氨基酸序列的正确和错误构象时,全原子距离依赖判别函数比使用近似表示的判别函数更能频繁地从错误构象中识别出正确构象。我们说明了使用详细原子描述以获得最准确判别的重要性,以及针对多种诱饵测试判别函数的必要性。判别函数还被证明能够捕捉原子间偏好的精细细节。这些结果表明,全原子距离依赖判别函数将有助于蛋白质结构预测和模型优化。