Petersen K F, Laurent D, Rothman D L, Cline G W, Shulman G I
Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8020, USA.
J Clin Invest. 1998 Mar 15;101(6):1203-9. doi: 10.1172/JCI579.
13C NMR spectroscopy was used to assess flux rates of hepatic glycogen synthase and phosphorylase in overnight-fasted subjects under one of four hypoglucagonemic conditions: protocol I, hyperglycemic (approximately 10 mM) -hypoinsulinemia (approximately 40 pM); protocol II, euglycemic (approximately 5 mM) -hyperinsulinemia (approximately 400 pM); protocol III, hyperglycemic (approximately 10 mM) -hyperinsulinemia (approximately 400 pM); and protocol IV; euglycemic (approximately 5 mM) -hypoinsulinemia (approximately 40 pM). Inhibition of net hepatic glycogenolysis occurred in both protocols I and II compared to protocol IV but via a different mechanism. Inhibition of net hepatic glycogenolysis occurred in protocol I mostly due to decreased glycogen phosphorylase flux, whereas in protocol II inhibition of net hepatic glycogenolysis occurred exclusively through the activation of glycogen synthase flux. Phosphorylase flux was unaltered, resulting in extensive glycogen cycling. Relatively high rates of net hepatic glycogen synthesis were observed in protocol III due to combined stimulation of glycogen synthase flux and inhibition of glycogen phosphorylase flux. In conclusion, under hypoglucagonemic conditions: (a) hyperglycemia, per se, inhibits net hepatic glycogenolysis primarily through inhibition of glycogen phosphorylase flux; (b) hyperinsulinemia, per se, inhibits net hepatic glycogenolysis primarily through stimulation of glycogen synthase flux; (c) inhibition of glycogen phosphorylase and the activation of glycogen synthase are not necessarily coupled and coordinated in a reciprocal fashion; and (d) promotion of hepatic glycogen cycling may be the principal mechanism by which insulin inhibits net hepatic glycogenolysis and endogenous glucose production in humans under euglycemic conditions.
采用13C核磁共振波谱法评估在四种低胰高血糖素血症状态之一的条件下,过夜禁食受试者肝脏糖原合酶和磷酸化酶的通量率:方案I,高血糖(约10 mM)-低胰岛素血症(约40 pM);方案II,血糖正常(约5 mM)-高胰岛素血症(约400 pM);方案III,高血糖(约10 mM)-高胰岛素血症(约400 pM);以及方案IV,血糖正常(约5 mM)-低胰岛素血症(约40 pM)。与方案IV相比,方案I和方案II中均出现了肝脏净糖原分解的抑制,但机制不同。方案I中肝脏净糖原分解的抑制主要是由于糖原磷酸化酶通量降低,而在方案II中,肝脏净糖原分解的抑制完全是通过糖原合酶通量的激活实现的。磷酸化酶通量未改变,导致大量糖原循环。由于糖原合酶通量的联合刺激和糖原磷酸化酶通量的抑制,在方案III中观察到相对较高的肝脏净糖原合成率。总之,在低胰高血糖素血症状态下:(a)高血糖本身主要通过抑制糖原磷酸化酶通量来抑制肝脏净糖原分解;(b)高胰岛素血症本身主要通过刺激糖原合酶通量来抑制肝脏净糖原分解;(c)糖原磷酸化酶的抑制和糖原合酶的激活不一定以相互对应的方式耦合和协调;(d)促进肝脏糖原循环可能是在血糖正常条件下胰岛素抑制人类肝脏净糖原分解和内源性葡萄糖生成的主要机制。