Suppr超能文献

用于心理任务期间自发脑电图信号分类的多元自回归模型

Multivariate autoregressive models for classification of spontaneous electroencephalographic signals during mental tasks.

作者信息

Anderson C W, Stolz E A, Shamsunder S

机构信息

Department of Computer Science, Colorado State University, Fort Collins 80523, USA.

出版信息

IEEE Trans Biomed Eng. 1998 Mar;45(3):277-86. doi: 10.1109/10.661153.

Abstract

This article explores the use of scalar and multivariate autoregressive (AR) models to extract features from the human electroencephalogram (EEG) with which mental tasks can be discriminated. This is part of a larger project to investigate the feasibility of using EEG to allow paralyzed persons to control a device such as a wheelchair. EEG signals from four subjects were recorded while they performed two mental tasks. Quarter-second windows of six-channel EEG were transformed into four different representations: scalar AR model coefficients, multivariate AR coefficients, eigenvalues of a correlation matrix, and the Karhunen-Loève transform of the multivariate AR coefficients. Feature vectors defined by these representations were classified with a standard, feedforward neural network trained via the error backpropagation algorithm. The four representations produced similar results, with the multivariate AR coefficients performing slightly better and more consistently with an average classification accuracy of 91.4% on novel, untrained, EEG signals.

摘要

本文探讨了使用标量和多元自回归(AR)模型从人类脑电图(EEG)中提取特征,以便区分心理任务。这是一个更大项目的一部分,该项目旨在研究使用脑电图让瘫痪者控制轮椅等设备的可行性。在四名受试者执行两项心理任务时记录了他们的脑电信号。将六通道脑电图的四分之一秒窗口转换为四种不同的表示形式:标量AR模型系数、多元AR系数、相关矩阵的特征值以及多元AR系数的卡尔胡宁-勒夫变换。由这些表示形式定义的特征向量通过基于误差反向传播算法训练的标准前馈神经网络进行分类。这四种表示形式产生了相似的结果,多元AR系数表现稍好且更稳定,对新的、未经训练的脑电信号的平均分类准确率为91.4%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验