Suppr超能文献

一种用于参考区间估计和评估的稳健方法。

A robust approach to reference interval estimation and evaluation.

作者信息

Horn P S, Pesce A J, Copeland B E

机构信息

Department of Mathematical Sciences, University of Cincinnati, OH 45221, USA.

出版信息

Clin Chem. 1998 Mar;44(3):622-31.

PMID:9510871
Abstract

We propose a new methodology for the estimation of reference intervals for data sets with small numbers of observations or for those with substantial numbers of outliers. We propose a prediction interval that uses robust estimates of location and scale. The SAS software can be readily modified to do these calculations. We compared four reference interval procedures (nonparametric, transformed, robust with a nonparametric lower limit, and transformed robust) for sample sizes of 20, 40, 60, 80, 100, and 120 from chi 2 distributions of 1, 4, 7, and 10 df. chi 2 distributions were chosen because they simulate the skewness of distributions often found in clinical chemistry populations. We used the root mean square error as the measure of performance and used computer simulation to calculate this measure. The robust estimator showed the best performance for small sample sizes. As the sample size increased, the performance values converged. The robust method for calculating upper reference interval values yields reasonable results. In two examples using real data for haptoglobin and glucose, the robust estimator provides slightly smaller upper reference limits than the other procedures. Lastly, the robust estimator was compared with the other procedures in a population where 5% of the values were multiplied by a factor of 5. The reference intervals were calculated with and without outlier detection. In this case, the robust approach consistently yielded upper reference interval values that were closer to those of the true underlying distributions. We propose that robust statistical analysis can be of great use for determinations of reference intervals from limited or possibly unreliable data.

摘要

我们提出了一种新方法,用于估计观测值数量较少或存在大量异常值的数据集的参考区间。我们提出了一种使用位置和尺度稳健估计的预测区间。SAS软件可以很容易地修改以进行这些计算。我们比较了四种参考区间程序(非参数法、变换法、下限为非参数法的稳健法和变换稳健法),样本量分别为20、40、60、80、100和120,来自自由度为1、4、7和10的卡方分布。选择卡方分布是因为它们模拟了临床化学人群中常见的分布偏度。我们使用均方根误差作为性能度量,并通过计算机模拟来计算该度量。对于小样本量,稳健估计器表现最佳。随着样本量增加,性能值趋于收敛。计算上参考区间值的稳健方法产生了合理的结果。在两个使用触珠蛋白和葡萄糖实际数据的例子中,稳健估计器提供的上参考限比其他程序略小。最后,在5%的值乘以5的总体中,将稳健估计器与其他程序进行比较。在有和没有异常值检测的情况下计算参考区间。在这种情况下,稳健方法始终产生更接近真实基础分布的上参考区间值。我们认为稳健统计分析对于从有限或可能不可靠的数据确定参考区间可能非常有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验