Suppr超能文献

CFTR: domains, structure, and function.

作者信息

Devidas S, Guggino W B

机构信息

Department of Physiology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.

出版信息

J Bioenerg Biomembr. 1997 Oct;29(5):443-51. doi: 10.1023/a:1022430906284.

Abstract

Mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) cause cystic fibrosis (CF) (Collins, 1992). Over 500 naturally occurring mutations have been identified in CF gene which are located in all of the domains of the protein (Kerem et al., 1990; Mercier et al., 1993; Ghanem et al., 1994; Fanen et al., 1992; Ferec et al., 1992; Cutting et al., 1990). Early studies by several investigators characterized CFTR as a chloride channel (Anderson et al.; 1991b,c; Bear et al., 1991). The complex secondary structure of the protein suggested that CFTR might possess other functions in addition to being a chloride channel. Studies have established that the CFTR functions not only as a chloride channel but is indeed a regulator of sodium channels (Stutts et al., 1995), outwardly rectifying chloride channels (ORCC) (Gray et al., 1989; Garber et al., 1992; Egan et al., 1992; Hwang et al., 1989; Schwiebert et al., 1995) and also the transport of ATP (Schwiebert et al., 1995; Reisin et al., 1994). This mini-review deals with the studies which elucidate the functions of the various domains of CFTR, namely the transmembrane domains, TMD1 and TMD2, the two cytoplasmic nucleotide binding domains, NBD1 and NBD2, and the regulatory, R, domain.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验