Albengres E, Le Louët H, Tillement J P
Département de Pharmacologie, Faculté de Médecine de Paris XII-Créteil, France.
Drug Saf. 1998 Feb;18(2):83-97. doi: 10.2165/00002018-199818020-00001.
There are 3 main classes of systemic antifungals: the polyene macrolides (e.g. amphotericin B), the azoles (e.g. the imidazoles ketoconazole and miconazole and the triazoles itraconazole and fluconazole) and the allylamines (e.g. terbinafine). Other systemic antifungals include griseofulvin and flucytosine. Most drug-drug interactions involving systemic antifungals have negative consequences. The interactions of amphotericin B, flucytosine, griseofulvin, terbinafine and azole antifungals can be divided into the following categories: (i) additive dangerous interactions; (ii) modifications of antifungal kinetics by other drugs; and (iii) modifications of the kinetics of other drugs by antifungals. Amphotericin B and flucytosine mainly interact with other agents pharmacodynamically. Clinically important drug interactions with amphotericin B cause nephrotoxicity, hypokalaemia and blood dyscrasias. The most important drug interaction of flucytosine occurs with myelotoxic agents. Hypokalaemia can precipitate the long QT syndrome, as well as potentially lethal ventricular arrhythmias like torsade de pointes. Synergism is likely to occur when either QT interval-modifying drugs (e.g. terfenadine and astemizole) and drugs that induce hypokalaemia (e.g. amphotericin B) are coadministered. Induction and inhibition of cytochrome P450 enzymes at hepatic and extrahepatic sites are the mechanisms that underlie the most serious pharmacokinetic drug interactions of the azole antifungals. These agents have been shown to notably decrease the catabolism of numerous drugs: histamine H1 receptor antagonists, warfarin, cyclosporin, tacrolimus, digoxin, felodipine, lovastatin, midazolam, triazolam, methylprednisolone, glibenclamide (glyburide), phenytoin, rifabutin, ritonavir, saquinavir, nevirapine and nortriptyline. Non-antifungal drugs like carbamazepine, phenobarbital (phenobarbitone), phenytoin and rifampicin (rifampin) can induce the metabolism of azole antifungals. The bioavailability of ketoconazole and itraconazole is also reduced by drugs that increase gastric pH, such as H2 receptor antagonists, proton pump inhibitors, sucralfate and didanosine. Griseofulvin is an enzymatic inducer of coumarin-like drugs and estrogens, whereas terbinafine seems to have a low potential for drug interactions. Despite important advances in our understanding of the mechanisms underlying pharmacokinetic drug interactions during the 1990s, at this time they still remain difficult to predict in terms of magnitude in individual patients. This is because of the large interindividual and intraindividual variations in the catalytic activity of those metabolising enzymes that can either be induced or inhibited by various drugs. Notwithstanding these variations, increasing clinical experience is allowing pharmacokinetic interactions to be used to advantage in order to improve the tolerability of some drugs, as recently exemplified by the use of a fixed combination of ketoconazole and cyclosporin.
多烯大环内酯类(如两性霉素B)、唑类(如咪唑类的酮康唑和咪康唑以及三唑类的伊曲康唑和氟康唑)和烯丙胺类(如特比萘芬)。其他全身性抗真菌药包括灰黄霉素和氟胞嘧啶。大多数涉及全身性抗真菌药的药物相互作用都有负面后果。两性霉素B、氟胞嘧啶、灰黄霉素、特比萘芬和唑类抗真菌药的相互作用可分为以下几类:(i)相加性危险相互作用;(ii)其他药物对抗真菌药动力学的改变;(iii)抗真菌药对其他药物动力学的改变。两性霉素B和氟胞嘧啶主要在药效学方面与其他药物相互作用。与两性霉素B临床上重要的药物相互作用会导致肾毒性、低钾血症和血液系统异常。氟胞嘧啶最重要的药物相互作用发生在与骨髓毒性药物合用时。低钾血症可诱发长QT综合征以及潜在致命的室性心律失常,如尖端扭转型室速。当同时使用可改变QT间期的药物(如特非那定和阿司咪唑)和可导致低钾血症的药物(如两性霉素B)时,可能会发生协同作用。肝内和肝外部位细胞色素P450酶的诱导和抑制是唑类抗真菌药最严重的药代动力学药物相互作用的潜在机制。这些药物已被证明能显著降低多种药物的分解代谢:组胺H1受体拮抗剂、华法林、环孢素、他克莫司、地高辛、非洛地平、洛伐他汀、咪达唑仑、三唑仑、甲泼尼龙、格列本脲(优降糖)、苯妥英、利福布汀、利托那韦、沙奎那韦、奈韦拉平和去甲替林。像卡马西平、苯巴比妥、苯妥英和利福平这样的非抗真菌药物可诱导唑类抗真菌药的代谢。增加胃内pH值的药物,如H2受体拮抗剂、质子泵抑制剂、硫糖铝和去羟肌苷,也会降低酮康唑和伊曲康唑的生物利用度。灰黄霉素是香豆素类药物和雌激素的酶诱导剂,而特比萘芬似乎药物相互作用的可能性较低。尽管在20世纪90年代我们对药代动力学药物相互作用的潜在机制有了重要进展,但目前在个体患者中仍难以预测其相互作用的程度。这是因为那些可被各种药物诱导或抑制的代谢酶的催化活性在个体间和个体内存在很大差异。尽管有这些差异,但随着临床经验的增加,药代动力学相互作用正被用于改善某些药物的耐受性,最近酮康唑和环孢素固定组合的使用就是一个例子。