Smith J V
Department of Geophysical Sciences and Center for Advanced Radiation Sources, 5734 S. Ellis Avenue, University of Chicago, Chicago, IL 60637, USA.
Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3370-5. doi: 10.1073/pnas.95.7.3370.
Catalysis at mineral surfaces might generate replicating biopolymers from simple chemicals supplied by meteorites, volcanic gases, and photochemical gas reactions. Many ideas are implausible in detail because the proposed mineral surfaces strongly prefer water and other ionic species to organic ones. The molecular sieve silicalite (Union Carbide; = Al-free Mobil ZSM-5 zeolite) has a three-dimensional, 10-ring channel system whose electrically neutral Si-O surface strongly adsorbs organic species over water. Three -O-Si tetrahedral bonds lie in the surface, and the fourth Si-O points inwards. In contrast, the outward Si-OH of simple quartz and feldspar crystals generates their ionic organophobicity. The ZSM-5-type zeolite mutinaite occurs in Antarctica with boggsite and tschernichite (Al-analog of Mobil Beta). Archean mutinaite might have become de-aluminated toward silicalite during hot/cold/wet/dry cycles. Catalytic activity of silicalite increases linearly with Al-OH substitution for Si, and Al atoms tend to avoid each other. Adjacent organophilic and catalytic Al-OH regions in nanometer channels might have scavenged organic species for catalytic assembly into specific polymers protected from prompt photochemical destruction. Polymer migration along weathered silicic surfaces of micrometer-wide channels of feldspars might have led to assembly of replicating catalytic biomolecules and perhaps primitive cellular organisms. Silica-rich volcanic glasses should have been abundant on the early Earth, ready for crystallization into zeolites and feldspars, as in present continental basins. Abundant chert from weakly metamorphosed Archaean rocks might retain microscopic clues to the proposed mineral adsorbent/catalysts. Other framework silicas are possible, including ones with laevo/dextro one-dimensional channels. Organic molecules, transition-metal ions, and P occur inside modern feldspars.
矿物表面的催化作用可能会利用陨石、火山气体和光化学气体反应提供的简单化学物质生成可复制的生物聚合物。许多观点在细节上令人难以置信,因为所提出的矿物表面强烈偏好水和其他离子物种而非有机物种。分子筛硅沸石(联合碳化物公司;即无铝的美孚ZSM - 5沸石)具有三维的10环通道系统,其电中性的Si - O表面对有机物种的吸附力远强于水。三个 - O - Si四面体键位于表面,第四个Si - O键指向内部。相比之下,简单石英和长石晶体向外的Si - OH产生了它们的离子疏有机性。ZSM - 5型沸石变钠沸石化沸石与博格石和切尔尼希石(美孚贝塔沸石的铝类似物)一起出现在南极洲。太古宙的变钠沸石化沸石在热/冷/湿/干循环过程中可能会朝着硅沸石脱铝。硅沸石的催化活性随Al - OH取代Si呈线性增加,并且Al原子倾向于相互避开。纳米通道中相邻的亲有机和催化性Al - OH区域可能会清除有机物种,以便催化组装成特定的聚合物,使其免受即时光化学破坏。聚合物沿着长石微米宽通道的风化硅质表面迁移可能导致了可复制的催化生物分子甚至原始细胞生物体的组装。富含二氧化硅的火山玻璃在早期地球上应该很丰富,随时准备结晶成沸石和长石,就像现在的大陆盆地一样。来自弱变质太古宙岩石的大量燧石可能保留了有关所提出的矿物吸附剂/催化剂的微观线索。其他骨架二氧化硅也是可能的,包括具有左旋/右旋一维通道的那些。有机分子、过渡金属离子和磷存在于现代长石内部。