Smith J V, Arnold F P, Parsons I, Lee M R
Department of Geophysical Sciences and Center for Advanced Radiation Sources, 5734 South Ellis Avenue, The University of Chicago, Chicago, IL 60637, USA.
Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3479-85. doi: 10.1073/pnas.96.7.3479.
Catalysis at organophilic silica-rich surfaces of zeolites and feldspars might generate replicating biopolymers from simple chemicals supplied by meteorites, volcanic gases, and other geological sources. Crystal-chemical modeling yielded packings for amino acids neatly encapsulated in 10-ring channels of the molecular sieve silicalite-ZSM-5-(mutinaite). Calculation of binding and activation energies for catalytic assembly into polymers is progressing for a chemical composition with one catalytic Al-OH site per 25 neutral Si tetrahedral sites. Internal channel intersections and external terminations provide special stereochemical features suitable for complex organic species. Polymer migration along nano/micrometer channels of ancient weathered feldspars, plus exploitation of phosphorus and various transition metals in entrapped apatite and other microminerals, might have generated complexes of replicating catalytic biomolecules, leading to primitive cellular organisms. The first cell wall might have been an internal mineral surface, from which the cell developed a protective biological cap emerging into a nutrient-rich "soup." Ultimately, the biological cap might have expanded into a complete cell wall, allowing mobility and colonization of energy-rich challenging environments. Electron microscopy of honeycomb channels inside weathered feldspars of the Shap granite (northwest England) has revealed modern bacteria, perhaps indicative of Archean ones. All known early rocks were metamorphosed too highly during geologic time to permit simple survival of large-pore zeolites, honeycombed feldspar, and encapsulated species. Possible microscopic clues to the proposed mineral adsorbents/catalysts are discussed for planning of systematic study of black cherts from weakly metamorphosed Archaean sediments.
沸石和长石富含亲有机硅的表面上的催化作用,可能会利用陨石、火山气体和其他地质来源提供的简单化学物质生成可自我复制的生物聚合物。晶体化学建模得出了氨基酸在分子筛硅沸石-ZSM-5-(辉沸石)的10元环通道中整齐包封的堆积方式。对于每25个中性硅四面体位置有一个催化性Al-OH位点的化学组成,催化组装成聚合物的结合能和活化能的计算正在进行中。内部通道交叉点和外部末端提供了适合复杂有机物种的特殊立体化学特征。聚合物沿着古老风化长石的纳米/微米通道迁移,再加上利用包裹在磷灰石和其他微量矿物中的磷和各种过渡金属,可能产生了可自我复制的催化生物分子复合物,从而导致了原始细胞生物的出现。第一个细胞壁可能是一个内部矿物表面,细胞从该表面发育出一个保护性的生物帽,进入富含营养的“汤”中。最终,生物帽可能扩展成一个完整的细胞壁,使细胞能够在富含能量的挑战性环境中移动和定殖。对英国西北部沙普花岗岩风化长石内部蜂窝状通道的电子显微镜观察发现了现代细菌,这可能指示了太古宙细菌。在地质时期,所有已知的早期岩石都经历了过高的变质作用,以至于大孔沸石、蜂窝状长石和包封物种无法简单存活。针对从弱变质太古宙沉积物中获取的黑色燧石进行系统研究的规划,讨论了所提出的矿物吸附剂/催化剂可能的微观线索。