Suppr超能文献

烟酸磷酸核糖基转移酶的动力学机制:对能量偶联的影响

Kinetic mechanism of nicotinic acid phosphoribosyltransferase: implications for energy coupling.

作者信息

Gross J W, Rajavel M, Grubmeyer C

机构信息

Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.

出版信息

Biochemistry. 1998 Mar 24;37(12):4189-99. doi: 10.1021/bi972014w.

Abstract

Nicotinic acid phosphoribosyltransferase (NAPRTase; EC 2.4.2.11) is a facultative ATPase that uses the energy of ATP hydrolysis to drive the synthesis of nicotinate mononucleotide and pyrophosphate from nicotinic acid (NA) and phosphoribosyl pyrophosphate (PRPP). To learn how NAPRTase uses this hydrolytic energy, we have further delineated the kinetic mechanism using steady-state and pre-steady-state kinetics, equilibrium binding, and isotope trapping. NAPRTase undergoes covalent phosphorylation by bound ATP at a rate of 30 s-1. The phosphoenzyme (E-P) binds PRPP with a KD of 0.6 microM, a value 2000-fold lower than that measured for the nonphosphorylated enzyme. The minimal rate constant for PRPP binding to E-P is 0.72 x 10(5) M-1 s-1. Isotope trapping shows that greater than 90% of bound PRPP partitions toward product upon addition of NA. Binding of NA to E-P.PRPP is rapid, kon >/= 7.0 x 10(6) M-1 s-1, and is followed by rapid formation of NAMN and PPi, k >/= 500 s-1. After product formation, E-P undergoes hydrolytic cleavage, k = 6.3 s-1, and products NAMN, PPi, and Pi are released. Quenching from the steady state under Vmax conditions indicates that slightly less than half the enzyme is in phosphorylated forms. To account for this finding, we propose that one step in the release of products is as slow as 5.2 s-1 and, together with the E-P cleavage step, codetermines the overall kcat of 2.3 s-1 at 22 degrees C. Energy coupling by NAPRTase involves two strategies frequently proposed for ATPases of macromolecular recognition and processing. First, E-P has a 10(3)-fold higher affinity for substrates than does nonphosphorylated enzyme, allowing the E-P to bind substrate from low concentration and nonphosphorylated enzyme to expel products against a high concentration. Second, the kinetic pathway follows "rules" [Jencks, W. P. (1989) J. Biol. Chem. 264, 18855-18858] that minimize unproductive alternative reaction pathways. However, an analysis of reaction schemes based on these strategies suggests that such nonvectorial reactions are intrinsically inefficient in ATP use.

摘要

烟酸磷酸核糖基转移酶(NAPRTase;EC 2.4.2.11)是一种兼性ATP酶,它利用ATP水解产生的能量驱动由烟酸(NA)和磷酸核糖焦磷酸(PRPP)合成烟酸单核苷酸和焦磷酸。为了了解NAPRTase如何利用这种水解能量,我们利用稳态和预稳态动力学、平衡结合及同位素捕获技术进一步阐明了其动力学机制。NAPRTase被结合的ATP共价磷酸化的速率为30 s-1。磷酸化酶(E-P)结合PRPP的解离常数KD为0.6 μM,该值比未磷酸化酶测得的值低2000倍。PRPP与E-P结合的最小速率常数为0.72×105 M-1 s-1。同位素捕获表明,加入NA后,超过90%的结合PRPP分配到产物中。NA与E-P.PRPP的结合很快,缔合常数kon≥7.0×106 M-1 s-1,随后迅速形成烟酰胺单核苷酸(NAMN)和焦磷酸(PPi),反应速率k≥500 s-1。产物形成后,E-P发生水解裂解,反应速率k = 6.3 s-1,产物NAMN、PPi和磷酸(Pi)被释放。在Vmax条件下从稳态淬灭表明,略少于一半的酶处于磷酸化形式。为了解释这一发现,我们提出产物释放的一步反应速率慢至5.2 s-1,并且与E-P裂解步骤共同决定了在22℃下2.3 s-1的总催化常数(kcat)。NAPRTase的能量偶联涉及大分子识别和加工的ATP酶经常采用的两种策略。首先,E-P对底物的亲和力比未磷酸化酶高103倍,使得E-P能够从低浓度结合底物,而未磷酸化酶能够逆高浓度排出产物。其次,动力学途径遵循“规则”[Jencks, W. P. (1989) J. Biol. Chem. 264, 18855-18858],使非生产性替代反应途径最小化。然而,基于这些策略对反应方案的分析表明,这种非矢量反应在ATP利用方面本质上是低效的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验