Dolin R H, Huff S M, Rocha R A, Spackman K A, Campbell K E
Kaiser Permanente, Southern California, La Palma.
J Am Med Inform Assoc. 1998 Mar-Apr;5(2):203-13. doi: 10.1136/jamia.1998.0050203.
To evaluate a "lexically assign, logically refine" (LALR) strategy for merging overlapping healthcare terminologies. This strategy combines description logic classification with lexical techniques that propose initial term definitions. The lexically suggested initial definitions are manually refined by domain experts to yield description logic definitions for each term in the overlapping terminologies of interest. Logic-based techniques are then used to merge defined terms.
A LALR strategy was applied to 7,763 LOINC and 2,050 SNOMED procedure terms using a common set of defining relationships taken from the LOINC data model. Candidate value restrictions were derived by lexically comparing the procedure's name with other terms contained in the reference SNOMED topography, living organism, function, and chemical axes. These candidate restrictions were reviewed by a domain expert, transformed into terminologic definitions for each of the terms, and then algorithmically classified.
The authors successfully defined 5,724 (73%) LOINC and 1,151 (56%) SNOMED procedure terms using a LALR strategy. Algorithmic classification of the defined concepts resulted in an organization mirroring that of the reference hierarchies. The classification techniques appropriately placed more detailed LOINC terms underneath the corresponding SNOMED terms, thus forming a complementary relationship between the LOINC and SNOMED terms.
LALR is a successful strategy for merging overlapping terminologies in a test case where both terminologies can be defined using the same defining relationships, and where value restrictions can be drawn from a single reference hierarchy. Those concepts not having lexically suggested value restrictions frequently indicate gaps in the reference hierarchy.
评估一种用于合并重叠医疗术语的“词汇分配、逻辑细化”(LALR)策略。该策略将描述逻辑分类与提出初始术语定义的词汇技术相结合。词汇建议的初始定义由领域专家手动细化,以生成感兴趣的重叠术语中每个术语的描述逻辑定义。然后使用基于逻辑的技术合并已定义的术语。
使用从LOINC数据模型中获取的一组通用定义关系,将LALR策略应用于7763个LOINC和2050个SNOMED程序术语。通过将程序名称与参考SNOMED地形、生物体、功能和化学轴中包含的其他术语进行词汇比较,得出候选值限制。这些候选限制由领域专家审查,转换为每个术语的术语定义,然后进行算法分类。
作者使用LALR策略成功定义了5724个(73%)LOINC和1151个(56%)SNOMED程序术语。对已定义概念的算法分类产生了一个与参考层次结构镜像的组织。分类技术将更详细的LOINC术语适当地置于相应的SNOMED术语之下,从而在LOINC和SNOMED术语之间形成互补关系。
在一个测试案例中,LALR是一种成功的合并重叠术语的策略,在该案例中,两个术语都可以使用相同的定义关系来定义,并且可以从单个参考层次结构中得出值限制。那些没有词汇建议值限制的概念通常表明参考层次结构中存在差距。