Suppr超能文献

临床分类的内容覆盖范围。为基于计算机的患者记录协会代码与结构工作组而作。

The content coverage of clinical classifications. For The Computer-Based Patient Record Institute's Work Group on Codes & Structures.

作者信息

Chute C G, Cohn S P, Campbell K E, Oliver D E, Campbell J R

机构信息

Section of Medical Information Resources, Mayo Foundation, Rochester, MN 55905, USA.

出版信息

J Am Med Inform Assoc. 1996 May-Jun;3(3):224-33. doi: 10.1136/jamia.1996.96310636.

Abstract

BACKGROUND AND OBJECTIVE

Patient conditions and events are the core of patient record content. Computer-based records will require standard vocabularies to represent these data consistently, thereby facilitating clinical decision support, research, and efficient care delivery. To address whether existing major coding systems can serve this function, the authors evaluated major clinical classifications for their content coverage.

METHODS

Clinical text from four medical centers was sampled from inpatient and outpatient settings. The resultant corpus of 14,247 words was parsed into 3,061 distinct concepts. These concepts were grouped into Diagnoses, Modifiers, Findings, Treatments and Procedures, and Other. Each concept was coded into ICD-9-CM, ICD-10, CPT, SNOMED III, Read V2, UMLS 1.3, and NANDA; a secondary reviewer ensured consistency. While coding, the information was scored: 0 = no match, 1 = fair match, 2 = complete match.

RESULTS

ICD-9-CM had an overall mean score of 0.77 out of 2; its highest subscore was 1.61 for Diagnoses. ICD-10 scored 1.60 for Diagnoses, and 0.62 overall. The overall score of ICD-9-CM augmented by CPT was not materially improved at 0.82. The SNOMED International system demonstrated the highest score in every category, including Diagnoses (1.90), and had an overall score of 1.74.

CONCLUSION

No classification captured all concepts, although SNOMED did notably the most complete job. The systems in major use in the United States, ICD-9-CM and CPT, fail to capture substantial clinical content. ICD-10 does not perform better than ICD-9-CM. The major clinical classifications in use today incompletely cover the clinical content of patient records; thus analytic conclusions that depend on these systems may be suspect.

摘要

背景与目的

患者状况及事件是患者记录内容的核心。基于计算机的记录需要标准词汇表来一致地表示这些数据,从而促进临床决策支持、研究以及高效的医疗服务提供。为探讨现有的主要编码系统是否能发挥此功能,作者评估了主要临床分类的内容覆盖范围。

方法

从四个医疗中心的住院和门诊环境中抽取临床文本。由此产生的14247个单词的语料库被解析为3061个不同的概念。这些概念被分为诊断、修饰词、检查结果、治疗与操作以及其他类别。每个概念被编码为ICD - 9 - CM、ICD - 10、CPT、SNOMED III、Read V2、UMLS 1.3和NANDA;由一名二级审核员确保一致性。编码时,对信息进行评分:0 = 无匹配,1 = 大致匹配,2 = 完全匹配。

结果

ICD - 9 - CM的总体平均得分为0.77(满分2分);其在诊断方面的最高子分数为1.61。ICD - 10在诊断方面得分为1.60,总体得分为0.62。ICD - 9 - CM与CPT相结合后的总体得分在0.82,并无实质性提高。SNOMED国际系统在每个类别中得分最高,包括诊断(1.90),总体得分为1.74。

结论

尽管SNOMED的工作最为全面,但没有一种分类能涵盖所有概念。在美国主要使用的系统ICD - 9 - CM和CPT未能涵盖大量临床内容。ICD - 10的表现并不优于ICD - 9 - CM。当今使用的主要临床分类并未完全涵盖患者记录的临床内容;因此,依赖这些系统得出的分析结论可能值得怀疑。

相似文献

引用本文的文献

3
JAMIA at 30: looking back and forward.《美国医学信息学会杂志》创刊30周年:回顾与展望
J Am Med Inform Assoc. 2023 Dec 22;31(1):1-9. doi: 10.1093/jamia/ocad215.
7
Terminology Services: Standard Terminologies to Control Health Vocabulary.术语服务:控制健康词汇的标准术语
Yearb Med Inform. 2018 Aug;27(1):227-233. doi: 10.1055/s-0038-1641200. Epub 2018 Apr 22.

本文引用的文献

8
Toward a medical-concept representation language. The Canon Group.迈向医学概念表示语言。佳能集团。
J Am Med Inform Assoc. 1994 May-Jun;1(3):207-17. doi: 10.1136/jamia.1994.95236153.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验