Bienfait B, Gasteiger J
Computer-Chemie-Centrum, Universität Erlangen-Nürnberg, Germany.
J Mol Graph Model. 1997 Aug;15(4):203-15, 254-8. doi: 10.1016/s0263-7855(97)00078-7.
Projection methods such as principal component analysis (PCA), nonlinear mapping (NLM), and the self-organizing map (SOM) are valuable algorithms for visualizing multidimensional data in a two-dimensional plane. Unfortunately, the reduction of the dimensionality involves distortions. In an attempt to graphically localize the distortions of the projected data, we suggest superposing colored graphs onto the 2D plots. The color of the edges of these graphs encodes the original high-dimensional distances between the connected points. The method is applied to a cluster analysis of 37 biologically active compounds and 471 molecules represented by a structural 3D descriptor.
诸如主成分分析(PCA)、非线性映射(NLM)和自组织映射(SOM)等投影方法是在二维平面中可视化多维数据的重要算法。不幸的是,降维会涉及失真。为了以图形方式定位投影数据的失真,我们建议将彩色图形叠加到二维图上。这些图形的边的颜色对相连点之间的原始高维距离进行编码。该方法应用于对37种生物活性化合物和由结构三维描述符表示的471个分子的聚类分析。