Schneider G, Schrödl W, Wallukat G, Müller J, Nissen E, Rönspeck W, Wrede P, Kunze R
Freie Universität Berlin, Universitätsklinikum Benjamin Franklin, Institut für Medizinische/Technische Physik und Lasermedizin, Krahmerstrasse 6-10, D-12207 Berlin, Germany.
Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12179-84. doi: 10.1073/pnas.95.21.12179.
A technique for systematic peptide variation by a combination of rational and evolutionary approaches is presented. The design scheme consists of five consecutive steps: (i) identification of a "seed peptide" with a desired activity, (ii) generation of variants selected from a physicochemical space around the seed peptide, (iii) synthesis and testing of this biased library, (iv) modeling of a quantitative sequence-activity relationship by an artificial neural network, and (v) de novo design by a computer-based evolutionary search in sequence space using the trained neural network as the fitness function. This strategy was successfully applied to the identification of novel peptides that fully prevent the positive chronotropic effect of anti-beta1-adrenoreceptor autoantibodies from the serum of patients with dilated cardiomyopathy. The seed peptide, comprising 10 residues, was derived by epitope mapping from an extracellular loop of human beta1-adrenoreceptor. A set of 90 peptides was synthesized and tested to provide training data for neural network development. De novo design revealed peptides with desired activities that do not match the seed peptide sequence. These results demonstrate that computer-based evolutionary searches can generate novel peptides with substantial biological activity.
本文介绍了一种通过合理设计与进化方法相结合来实现系统性肽段变异的技术。该设计方案包括五个连续步骤:(i)鉴定具有所需活性的“种子肽”;(ii)从种子肽周围的物理化学空间中生成变体;(iii)合成并测试这个偏向文库;(iv)用人工神经网络对定量序列-活性关系进行建模;(v)使用训练好的神经网络作为适应度函数,在序列空间中通过基于计算机的进化搜索进行从头设计。该策略成功应用于鉴定新型肽,这些肽可完全阻止扩张型心肌病患者血清中抗β1-肾上腺素能受体自身抗体的正性变时作用。由10个残基组成的种子肽是通过抗原表位作图从人β1-肾上腺素能受体的一个细胞外环中获得的。合成并测试了一组90个肽,以提供用于神经网络开发的训练数据。从头设计揭示了具有所需活性但与种子肽序列不匹配的肽。这些结果表明,基于计算机的进化搜索可以产生具有显著生物活性的新型肽。