Suppr超能文献

通过人工神经网络和基于计算机的进化搜索进行肽设计。

Peptide design by artificial neural networks and computer-based evolutionary search.

作者信息

Schneider G, Schrödl W, Wallukat G, Müller J, Nissen E, Rönspeck W, Wrede P, Kunze R

机构信息

Freie Universität Berlin, Universitätsklinikum Benjamin Franklin, Institut für Medizinische/Technische Physik und Lasermedizin, Krahmerstrasse 6-10, D-12207 Berlin, Germany.

出版信息

Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12179-84. doi: 10.1073/pnas.95.21.12179.

Abstract

A technique for systematic peptide variation by a combination of rational and evolutionary approaches is presented. The design scheme consists of five consecutive steps: (i) identification of a "seed peptide" with a desired activity, (ii) generation of variants selected from a physicochemical space around the seed peptide, (iii) synthesis and testing of this biased library, (iv) modeling of a quantitative sequence-activity relationship by an artificial neural network, and (v) de novo design by a computer-based evolutionary search in sequence space using the trained neural network as the fitness function. This strategy was successfully applied to the identification of novel peptides that fully prevent the positive chronotropic effect of anti-beta1-adrenoreceptor autoantibodies from the serum of patients with dilated cardiomyopathy. The seed peptide, comprising 10 residues, was derived by epitope mapping from an extracellular loop of human beta1-adrenoreceptor. A set of 90 peptides was synthesized and tested to provide training data for neural network development. De novo design revealed peptides with desired activities that do not match the seed peptide sequence. These results demonstrate that computer-based evolutionary searches can generate novel peptides with substantial biological activity.

摘要

本文介绍了一种通过合理设计与进化方法相结合来实现系统性肽段变异的技术。该设计方案包括五个连续步骤:(i)鉴定具有所需活性的“种子肽”;(ii)从种子肽周围的物理化学空间中生成变体;(iii)合成并测试这个偏向文库;(iv)用人工神经网络对定量序列-活性关系进行建模;(v)使用训练好的神经网络作为适应度函数,在序列空间中通过基于计算机的进化搜索进行从头设计。该策略成功应用于鉴定新型肽,这些肽可完全阻止扩张型心肌病患者血清中抗β1-肾上腺素能受体自身抗体的正性变时作用。由10个残基组成的种子肽是通过抗原表位作图从人β1-肾上腺素能受体的一个细胞外环中获得的。合成并测试了一组90个肽,以提供用于神经网络开发的训练数据。从头设计揭示了具有所需活性但与种子肽序列不匹配的肽。这些结果表明,基于计算机的进化搜索可以产生具有显著生物活性的新型肽。

相似文献

6
Sparse Neural Network Models of Antimicrobial Peptide-Activity Relationships.抗菌肽活性关系的稀疏神经网络模型
Mol Inform. 2016 Dec;35(11-12):606-614. doi: 10.1002/minf.201600029. Epub 2016 Jul 11.
7
Development of simple fitness landscapes for peptides by artificial neural filter systems.
Biol Cybern. 1995 Aug;73(3):245-54. doi: 10.1007/BF00201426.

引用本文的文献

2
Deep Learning in Protein Structural Modeling and Design.蛋白质结构建模与设计中的深度学习
Patterns (N Y). 2020 Nov 12;1(9):100142. doi: 10.1016/j.patter.2020.100142. eCollection 2020 Dec 11.
5
Automating drug discovery.自动化药物发现。
Nat Rev Drug Discov. 2018 Feb;17(2):97-113. doi: 10.1038/nrd.2017.232. Epub 2017 Dec 15.
6
Computational Methods Applied to Rational Drug Design.应用于合理药物设计的计算方法
Open Med Chem J. 2016 Apr 26;10:7-20. doi: 10.2174/1874104501610010007. eCollection 2016.
9
Piloting the membranolytic activities of peptides with a self-organizing map.利用自组织映射图研究肽的膜溶解活性
Chembiochem. 2014 Oct 13;15(15):2225-31. doi: 10.1002/cbic.201402231. Epub 2014 Sep 9.
10
Antimicrobial peptides.抗菌肽。
Pharmaceuticals (Basel). 2013 Nov 28;6(12):1543-75. doi: 10.3390/ph6121543.

本文引用的文献

2
Checking the projection display of multivariate data with colored graphs.
J Mol Graph Model. 1997 Aug;15(4):203-15, 254-8. doi: 10.1016/s0263-7855(97)00078-7.
5
Development of artificial neural filters for pattern recognition in protein sequences.
J Mol Evol. 1993 Jun;36(6):586-95. doi: 10.1007/BF00556363.
8
Volume changes on protein folding.蛋白质折叠过程中的体积变化。
Structure. 1994 Jul 15;2(7):641-9. doi: 10.1016/s0969-2126(00)00065-4.
9
Sequence databases: an indispensible source for biotechnological research.
J Biotechnol. 1994 Jun 30;35(2-3):239-56. doi: 10.1016/0168-1656(94)90039-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验