Suppr超能文献

[容量替代溶液——药理学与临床应用]

[Volume replacement solutions--pharmacology and clinical use].

作者信息

Adams H A, Piepenbrock S, Hempelmann G

机构信息

Zentrum Anästhesiologie-Anästhesiologie I, Medizinische Hochschule Hannover.

出版信息

Anasthesiol Intensivmed Notfallmed Schmerzther. 1998 Jan;33(1):2-17. doi: 10.1055/s-2007-994204.

Abstract

PHYSIOLOGY AND PATHOPHYSIOLOGY

Total body water represents 60% of body weight (BW), consisting of 40% BW intra- and 20% BW extracellular fluid. Extracellular fluid is divided into 16% BW interstitial fluid and 4% BW plasma volume (Fig. 1). The colloid oncotic pressure (COP) of the plasma proteins, which is about 25 mmHg (Fig. 2), is the main factor for the retention of intravascular volume and the prevention of interstitial edema. Within a defined range, oxygen transport capacity can be improved by normovolaemic haemodilution. Under strictly normovolaemic conditions ("controlled haemodilution"), the critical haemoglobin concentration for intensive care patients is about 10.0 g/dl, and 8-6 g/dl in patients with satisfactory compensatory mechanisms under stable clinical conditions. Larger blood volume deficits are replaced step by step with volume replacement solutions (crystalloids and synthetic colloids), packed red cells, fresh-frozen plasma, and platelets (Fig. 3). VOLUME REPLACEMENT WITH CRYSTALLOID AND COLLOID SOLUTIONS: Crystalloid solutions do not contain any macromolecules. Due to their lack of intrinsic COP, they spread rapidly over the intravascular and interstitial space. To achieve a comparable volume effect like colloid solutions, a fourfold infusion volume is necessary. Thus, crystalloids should be used in addition to colloid solutions to compensate the interstitial fluid deficit. Hyperosmotic-hyperoncotic solutions have not yet been established, and their benefit seems doubtful. Synthetic colloid solutions contain gelatin, dextran, or hydroxyethyl starch (HES) molecules. Due to their intrinsic COP, fluid is fixated in the intravascular space (Fig. 4). Solutions with high COP increase the intravascular volume due to resorption of interstitial fluid (plasma expanders). Pharmacological characterisation of synthetic colloids includes concentration [%], mean molecular weight [x1,000 Dalton] and degree and position of substitution (HES only). Main clinical features are the maximal volume effect and the duration of a 100% and a 50% volume effect (Fig. 5). For economic reasons, 5% albumin should not be used for volume replacement. The use of 20% albumin in intensive care patients is also limited and recommended only if a capillary leck is unlikely and the dose limits of synthetic colloids are reached. Gelatin is a polypeptide of bovine origin and achieves a shortlasting isovolaemic volume effect. When compared with dextran or HES, negative effects on haemostatis are less, and the renal function is not impaired. Thus, gelatin is first of all indicated in patients with limited volume demand, and secondly in situations with massive blood losses, when the dose limits of HES are reached. Dextran has no specific benefits. HES is a polysaccharide of maize or potato origin. By substitution of glucose molecules with hydroxyethyl groups, starch molecules are protected against fast amylase degradation. Metabolism depends on the degree and position of substitution and mean molecular weight. Smaller molecules are eliminated via the kidneys, but a certain amount of larger molecules is stored in the reticulo-endothelial system. HES is available in very different preparations (concentration 3-10%, mean molecular weight 70,000-450,000 Dalton, substitution 50-70%). Special indications of 10% HES 200/0.5 are rapid hypervolaemic replacement of massive blood losses and increase of COP in intensive care patients without capillary leak. Synthetic colloids as well as albumin may lead to adverse reactions, which are generally very rare. In large-scala studies, no significant differences have been found with regard to incidence and severity.

摘要

生理学与病理生理学

总体液占体重的60%,其中细胞内液占体重的40%,细胞外液占体重的20%。细胞外液又分为占体重16%的组织间液和占体重4%的血浆量(图1)。血浆蛋白的胶体渗透压(COP)约为25 mmHg(图2),是维持血管内容量和防止组织间水肿的主要因素。在一定范围内,通过等容血液稀释可提高氧运输能力。在严格的等容条件下(“控制性血液稀释”),重症监护患者的临界血红蛋白浓度约为10.0 g/dl,而在临床状况稳定且代偿机制良好的患者中为8 - 6 g/dl。较大的血容量不足需逐步用容量补充液(晶体液和合成胶体液)、浓缩红细胞、新鲜冷冻血浆和血小板进行补充(图3)。

晶体液和胶体液的容量补充

晶体液不含任何大分子物质。由于其缺乏固有COP,它们会迅速扩散到血管内和组织间隙。为达到与胶体液相当的容量效应,所需输注量是胶体液的四倍。因此,应在使用胶体液的基础上补充晶体液以弥补组织间液不足。高渗 - 高胶体渗透压溶液尚未确立,其益处似乎存疑。合成胶体液含有明胶、右旋糖酐或羟乙基淀粉(HES)分子。由于其固有COP,液体被固定在血管内空间(图4)。高COP溶液可通过吸收组织间液增加血管内容量(血浆扩容剂)。合成胶体液的药理学特性包括浓度[%]、平均分子量[×1000道尔顿]以及取代程度和位置(仅适用于HES)。主要临床特征为最大容量效应以及100%和50%容量效应的持续时间(图5)。出于经济原因,5%白蛋白不应作为容量补充剂使用。在重症监护患者中,20%白蛋白的使用也受到限制,仅在不太可能发生毛细血管渗漏且达到合成胶体液剂量限制时才推荐使用。明胶是一种源自牛的多肽,可产生短暂的等容容量效应。与右旋糖酐或HES相比,其对止血的负面影响较小,且不损害肾功能。因此,明胶首先适用于容量需求有限的患者,其次适用于大出血且达到HES剂量限制的情况。右旋糖酐无特殊优势。HES是一种源自玉米或马铃薯的多糖。通过用羟乙基基团取代葡萄糖分子,淀粉分子可防止被淀粉酶快速降解。其代谢取决于取代程度和位置以及平均分子量。较小的分子通过肾脏排出,但一定量的较大分子会储存在网状内皮系统中。HES有多种不同制剂(浓度3 - 10%,平均分子量70,000 - 450,000道尔顿,取代度50 - 70%)。10%HES 200/0.5的特殊适应证为快速高容量补充大量失血以及在无毛细血管渗漏的重症监护患者中增加COP。合成胶体液以及白蛋白可能会导致不良反应,通常非常罕见。在大规模研究中,未发现不良反应的发生率和严重程度有显著差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验