Maigné J, Deschatrette J, Sarrazin S, Hecquet B, Guerroui S, Wolfrom C
Unité de Recherche Génétique et mécanismes des maladies du foie de l'enfant, INSERM U347 Hôpital de Bicêtre, Kremlin-Bicêtre, France.
In Vitro Cell Dev Biol Anim. 1998 Feb;34(2):163-9. doi: 10.1007/s11626-998-0100-3.
Immortal cells perpetuate the rises and falls of proliferation that are progressively damped in mortal long-term cultured cells. For immortal rat hepatoma Fao cells, similar waves of proliferation occurred about every 3-4 wk. Under the same conditions, embryonic human fibroblasts and transformed but not immortalized embryonic fibroblasts display similarly recurring proliferation waves that progressively decrease in amplitude until senescence of the lines. In addition, strains of diploid normal human skin fibroblasts cultured under different culture conditions display a similar time-pattern of proliferation. Although the amplitude and baseline of these fluctuations are characteristic for each cell line, a common point was marked slow down in proliferation after every sequence of about 25 population doublings for all cells. Renewed proliferation waves of Fao cells allow about 22-23 additional population doublings each. Normal embryonic fibroblast culture and its transformed counterpart accumulate about 30 and 60 population doublings, respectively, before senescence. Normal fibroblast strains accumulate about 25 population doublings over their entire life spans. This halt in proliferation after every stretch of about 25 population doublings may correspond to a structural or functional stop following attrition of telomeric DNA. This putative stop may be bypassed once in transformed embryonic cells and repetitively in immortal cells. In support of this hypothesis, we observed rapid telomere shortening, in two steps, during divisions of mortal embryonic cells, and maintenance of long telomeres in immortal Fao cells, which may indicate episodic repair of telomeres. Alternatively, such maintenance of long telomeres may reflect survival and successive clonal growth of rare cells with long telomeres. We suggest that the balance between telomere attrition and repair processes regulates the waves of proliferation.
永生细胞使增殖的起伏得以延续,而在有限的长期培养细胞中,这种起伏会逐渐受到抑制。对于永生的大鼠肝癌Fao细胞,大约每3 - 4周会出现类似的增殖波。在相同条件下,胚胎人成纤维细胞以及转化但未永生的胚胎成纤维细胞也表现出类似的周期性增殖波,其振幅会逐渐减小直至细胞系衰老。此外,在不同培养条件下培养的二倍体正常人皮肤成纤维细胞株也呈现出类似的增殖时间模式。尽管这些波动的幅度和基线对于每个细胞系来说都是独特的,但一个共同点是,所有细胞在每经过约25次群体倍增后,增殖都会明显减缓。Fao细胞新的增殖波每次可使群体倍增次数再增加约22 - 23次。正常胚胎成纤维细胞培养物及其转化对应物在衰老前分别积累约30次和60次群体倍增。正常成纤维细胞株在其整个寿命周期内积累约25次群体倍增。每经过约25次群体倍增后增殖的停止可能对应于端粒DNA损耗后的结构或功能停滞。这种假定的停滞在转化的胚胎细胞中可能会被绕过一次,而在永生细胞中则会反复被绕过。为支持这一假设,我们观察到在有限的胚胎细胞分裂过程中,端粒会分两步快速缩短,而在永生的Fao细胞中则维持着长端粒,这可能表明端粒存在阶段性修复。或者,这种长端粒的维持可能反映了具有长端粒的稀有细胞的存活和连续克隆生长。我们认为端粒损耗与修复过程之间的平衡调节着增殖波。