Smith T, Pitts K, McGarvey J A, Summers A O
Department of Microbiology, University of Georgia, Athens 30602-2605, USA.
Appl Environ Microbiol. 1998 Apr;64(4):1328-32. doi: 10.1128/AEM.64.4.1328-1332.1998.
We used metalloregulated luciferase reporter fusions and spectroscopic quantification of soluble Hg(II) to determine that the hydroperoxidase-catalase, KatG, of Escherichia coli can oxidize monatomic elemental mercury vapor, Hg(0), to the water-soluble, ionic form, Hg(II). A strain with a mutation in katG and a strain overproducing KatG were used to demonstrate that the amount of Hg(II) formed is proportional to the catalase activity. Hg(0) oxidation was much decreased in stationary-phase cells of a strain lacking KatG, suggesting that the monofunctional hydroperoxidase KatE is less effective at this reaction. Unexpectedly, Hg(0) oxidation also occurred in a strain lacking both KatE and KatG, suggesting that activities other than hydroperoxidases may carry out this reaction. Two typical soil bacteria, Bacillus and Streptomyces, also oxidize Hg(0) to Hg(II). These observations establish for the first time that bacteria can contribute, as do mammals and plants, to the oxidative phase of the global Hg cycle.
我们使用金属调节的荧光素酶报告基因融合体以及对可溶性Hg(II)进行光谱定量分析,以确定大肠杆菌的氢过氧化物酶 - 过氧化氢酶KatG能够将单原子元素汞蒸气Hg(0)氧化为水溶性离子形式Hg(II)。使用katG发生突变的菌株和过量表达KatG的菌株来证明形成的Hg(II)量与过氧化氢酶活性成正比。在缺乏KatG的菌株的稳定期细胞中,Hg(0)氧化作用大大降低,这表明单功能氢过氧化物酶KatE在该反应中效果较差。出乎意料的是,在同时缺乏KatE和KatG的菌株中也发生了Hg(0)氧化,这表明除氢过氧化物酶外的其他活性可能参与了该反应。两种典型的土壤细菌芽孢杆菌和链霉菌也能将Hg(0)氧化为Hg(II)。这些观察结果首次证实,细菌与哺乳动物和植物一样,能够促进全球汞循环的氧化阶段。