Suppr超能文献

预测老年健康计划参保者的住院情况和功能衰退:行政数据与自我报告一样准确吗?

Predicting hospitalization and functional decline in older health plan enrollees: are administrative data as accurate as self-report?

作者信息

Coleman E A, Wagner E H, Grothaus L C, Hecht J, Savarino J, Buchner D M

机构信息

Department of Medicine, University of Washington, and VA Puget Sound Health Care System, Seattle, USA.

出版信息

J Am Geriatr Soc. 1998 Apr;46(4):419-25. doi: 10.1111/j.1532-5415.1998.tb02460.x.

Abstract

OBJECTIVE

To compare the predictive accuracy of two validated indices, one that uses self-reported variables and a second that uses variables derived from administrative data sources, to predict future hospitalization. To compare the predictive accuracy of these same two indices for predicting future functional decline.

DESIGN

A longitudinal cohort study with 4 years of follow-up.

SETTING

A large staff model HMO in western Washington State.

PARTICIPANTS

HMO Enrollees 65 years and older (n = 2174) selected at random to participate in a health promotion trial and who completed a baseline questionnaire.

MEASUREMENT

Predicted probabilities from the two indices were determined for study participants for each of two outcomes: hospitalization two or more times in 4 years and functional decline in 4 years, measured by Restricted Activity Days. The two indices included similar demographic characteristics, diagnoses, and utilization predictors. The probabilities from each index were entered into a Receiver Operating Characteristic (ROC) curve program to obtain the Area Under the Curve (AUC) for comparison of predictive accuracy.

RESULTS

For hospitalization, the AUC of the self-report and administrative indices were .696 and .694, respectively (difference between curves, P = .828). For functional decline, the AUC of the two indices were .714 and .691, respectively (difference between curves, P = .144).

CONCLUSIONS

Compared with a self-report index, the administrative index affords wider population coverage, freedom from nonresponse bias, lower cost, and similar predictive accuracy. A screening strategy utilizing administrative data sources may thus prove more valuable for identifying high risk older health plan enrollees for population-based interventions designed to improve their health status.

摘要

目的

比较两个经过验证的指标的预测准确性,一个指标使用自我报告变量,另一个指标使用源自行政数据源的变量,以预测未来住院情况。比较这两个相同指标在预测未来功能衰退方面的预测准确性。

设计

一项为期4年随访的纵向队列研究。

地点

华盛顿州西部的一个大型员工模式健康维护组织(HMO)。

参与者

随机选择参加健康促进试验并完成基线问卷调查的65岁及以上的HMO参保者(n = 2174)。

测量

针对两个结局中的每一个,为研究参与者确定两个指标的预测概率:4年内住院两次或更多次以及4年内功能衰退,通过受限活动天数来衡量。这两个指标包括相似的人口统计学特征、诊断和使用预测因素。将每个指标的概率输入到受试者工作特征(ROC)曲线程序中,以获得曲线下面积(AUC),用于比较预测准确性。

结果

对于住院情况,自我报告指标和行政指标的AUC分别为0.696和0.694(曲线间差异,P = 0.828)。对于功能衰退,两个指标的AUC分别为0.714和0.691(曲线间差异,P = 0.144)。

结论

与自我报告指标相比,行政指标具有更广泛的人群覆盖范围、无应答偏差、成本更低且预测准确性相似。因此,利用行政数据源的筛查策略可能对于识别高风险的老年健康计划参保者以进行旨在改善其健康状况的基于人群的干预措施更有价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验