Roux M J, Olcese R, Toro L, Bezanilla F, Stefani E
Department of Anesthesiology, University of California, Los Angeles, Los Angeles, California 90095-1778, USA.
J Gen Physiol. 1998 May;111(5):625-38. doi: 10.1085/jgp.111.5.625.
Fast inactivating Shaker H4 potassium channels and nonconducting pore mutant Shaker H4 W434F channels have been used to correlate the installation and recovery of the fast inactivation of ionic current with changes in the kinetics of gating current known as "charge immobilization" (Armstrong, C.M., and F. Bezanilla. 1977. J. Gen. Physiol. 70:567-590.). Shaker H4 W434F gating currents are very similar to those of the conducting clone recorded in potassium-free solutions. This mutant channel allows the recording of the total gating charge return, even when returning from potentials that would largely inactivate conducting channels. As the depolarizing potential increased, the OFF gating currents decay phase at -90 mV return potential changed from a single fast component to at least two components, the slower requiring approximately 200 ms for a full charge return. The charge immobilization onset and the ionic current decay have an identical time course. The recoveries of gating current (Shaker H4 W434F) and ionic current (Shaker H4) in 2 mM external potassium have at least two components. Both recoveries are similar at -120 and -90 mV. In contrast, at higher potentials (-70 and -50 mV), the gating charge recovers significantly more slowly than the ionic current. A model with a single inactivated state cannot account for all our data, which strongly support the existence of "parallel" inactivated states. In this model, a fraction of the charge can be recovered upon repolarization while the channel pore is occupied by the NH2-terminus region.
快速失活的Shaker H4钾通道和非传导性孔突变体Shaker H4 W434F通道已被用于将离子电流快速失活的建立和恢复与门控电流动力学变化(称为“电荷固定”)相关联(阿姆斯特朗,C.M.,和F.贝萨尼利亚。1977年。《普通生理学杂志》70:567 - 590)。Shaker H4 W434F门控电流与在无钾溶液中记录的传导性克隆的门控电流非常相似。即使从会使传导性通道大量失活的电位复极化回来,这个突变通道也能记录到总的门控电荷返回。随着去极化电位增加,在 - 90 mV复极化电位下的关断门控电流衰减相从单个快速成分变为至少两个成分,较慢的成分需要大约200毫秒才能完全电荷返回。电荷固定的起始和离子电流衰减具有相同的时间进程。在2 mM外部钾离子条件下,门控电流(Shaker H4 W434F)和离子电流(Shaker H4)的恢复至少有两个成分。在 - 120和 - 90 mV时,两种恢复情况相似。相比之下,在较高电位( - 70和 - 50 mV)下,门控电荷的恢复明显比离子电流慢得多。具有单个失活状态的模型无法解释我们所有的数据,这有力地支持了“平行”失活状态的存在。在这个模型中,当通道孔被NH2末端区域占据时,一部分电荷在复极化时可以恢复。