Suppr超能文献

预测治疗结果。

Predicting the outcome of treatment.

作者信息

March J S, Curry J F

机构信息

Department of Psychiatry, Duke University, Durham, North Carolina 27710, USA.

出版信息

J Abnorm Child Psychol. 1998 Feb;26(1):39-51. doi: 10.1023/a:1022682723027.

Abstract

The clinical question--"Which treatment(s) for which patients with what set of subgrouping characteristics working by what mechanism(s)?"--rests at the heart of differential therapeutics. Experimentally, this question reduces to a test of how well we can predict the outcome of treatment using the treatment conditions plus other moderating and mediating variables. Reflecting the discussions held at a recent National Institute of Mental Health (NIMH) conference on psychosocial treatments, and using pediatric anxiety disorders as a case in point, we discuss the problem of prediction in treatment outcome studies from the standpoint of definition of terms, using the general linear model of prediction. We also outline types of studies that may be useful in testing potential predictors, and put forward a possible matrix of predictor variables as currently implemented in an NIMH-funded treatment outcome study of pediatric obsessive-compulsive disorder (OCD). We conclude by making specific suggestions for implementing a broader approach to the study of predictors.

摘要

临床问题——“针对具有何种亚组特征的哪些患者,采用何种机制的哪些治疗方法?”——是差异治疗学的核心所在。从实验角度来看,这个问题简化为一个测试,即我们利用治疗条件以及其他调节和中介变量预测治疗结果的能力有多强。以最近美国国立精神卫生研究所(NIMH)关于心理社会治疗的会议讨论内容为依据,并以儿童焦虑症为例,我们从术语定义的角度,运用预测的一般线性模型,探讨治疗结果研究中的预测问题。我们还概述了可能有助于测试潜在预测因素的研究类型,并提出了一个预测变量的可能矩阵,这是目前在NIMH资助的儿童强迫症(OCD)治疗结果研究中所采用的。我们最后针对实施更广泛的预测因素研究方法提出了具体建议。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验