Schmitz F J, Steiert M, Hofmann B, Verhoef J, Hadding U, Heinz H P, Köhrer K
Institut für Medizinische Mikrobiologie und Virologie der Heinrich-Heine-Universität Düsseldorf, Germany.
J Med Microbiol. 1998 Apr;47(4):335-40. doi: 10.1099/00222615-47-4-335.
As well as conventional methods such as immunodiffusion, ELISA, or agglutination for the detection of toxin production in Staphylococcus aureus, amplification techniques like PCR allow a very sensitive and specific identification of the genes responsible for enterotoxin B and C, and TSST-1 production. These toxins might be a cause of the toxic shock syndrome (TSS). For that reason an easy and quick test system for determining the toxin production pattern of S. aureus isolates is desirable so that strains suspected to be toxin producers may be identified much faster and easier. In the present investigation, a new multiplex-PCR method was used that allowed single bacterial colonies grown on agar plates to be used directly in the PCR assay without preceding preparation. This procedure generated information concerning the presence of seb, sec-1 and tst genes within 4 h in a single test. To analyse the sensitivity and the specificity of this procedure, 100 methicillin-resistant S. aureus (MRSA), 50 coagulase-negative staphylococci and 50 other eubacterial isolates were tested initially with sets of single primer pairs followed by a combined multiplex-PCR. Results of this amplification technique were compared to a conventional and widely used method for toxin detection, reversed passive latex agglutination (RPLA). With the RPLA assay results as the basis, sensitivity and specificity of the seb and tst primer sets were 100%, whereas sensitivity and specificity of the sec-1 primer set were 100% and 82%, respectively. With the sec-1 primer set, two isolates were identified as carrying the corresponding toxin gene although the RPLA test did not show any detectable toxin. The multiplex-PCR rapidly generated reliable information concerning the toxin-producing capacity of staphylococcal strains and could be easily integrated into a multiplex procedure described previously. The latter enabled the identification of specific PCR products for eubacteria and staphylococci as well as the detection of the coa and mecA genes.
除了用于检测金黄色葡萄球菌毒素产生的常规方法,如免疫扩散、酶联免疫吸附测定(ELISA)或凝集反应外,像聚合酶链反应(PCR)这样的扩增技术能够非常灵敏且特异地区分负责产生肠毒素B和C以及毒性休克综合征毒素-1(TSST-1)的基因。这些毒素可能是中毒性休克综合征(TSS)的病因。因此,需要一种简便快速的检测系统来确定金黄色葡萄球菌分离株的毒素产生模式,以便能更快、更轻松地鉴定疑似产生毒素的菌株。在本研究中,使用了一种新的多重PCR方法,该方法允许直接将琼脂平板上生长的单个细菌菌落用于PCR检测,无需预先处理。此程序在单次检测中4小时内就能得出有关seb、sec-1和tst基因存在情况的信息。为分析该程序的敏感性和特异性,最初先用单引物对组合对100株耐甲氧西林金黄色葡萄球菌(MRSA)、50株凝固酶阴性葡萄球菌和50株其他真细菌分离株进行检测,随后进行联合多重PCR。将这种扩增技术的结果与一种传统且广泛使用的毒素检测方法——反向被动乳胶凝集试验(RPLA)进行比较。以RPLA检测结果为基础,seb和tst引物对的敏感性和特异性均为100%,而sec-1引物对的敏感性和特异性分别为100%和82%。使用sec-1引物对时,尽管RPLA检测未显示任何可检测到的毒素,但有两个分离株被鉴定为携带相应的毒素基因。多重PCR能快速生成有关葡萄球菌菌株毒素产生能力的可靠信息,并且可以轻松整合到先前描述的多重程序中。后者能够鉴定真细菌和葡萄球菌的特异性PCR产物以及检测coa和mecA基因。