Suppr超能文献

运动神经元在节律性活动神经元网络中的模式生成作用。

Pattern-generating role for motoneurons in a rhythmically active neuronal network.

作者信息

Staras K, Kemenes G, Benjamin P R

机构信息

Sussex Centre for Neuroscience, School of Biological Sciences, University of Sussex, Falmer, Brighton, United Kingdom BN1 9QG.

出版信息

J Neurosci. 1998 May 15;18(10):3669-88. doi: 10.1523/JNEUROSCI.18-10-03669.1998.

Abstract

The role of motoneurons in central motor pattern generation was investigated in the feeding system of the pond snail Lymnaea stagnalis, an important invertebrate model of behavioral rhythm generation. The neuronal network responsible for the three-phase feeding motor program (fictive feeding) has been characterized extensively and divided into populations of central pattern generator (CPG) interneurons, modulatory interneurons, and motoneurons. A previous model of the feeding system considered that the motoneurons were passive followers of CPG interneuronal activity. Here we present new, detailed physiological evidence that motoneurons that innervate the musculature of the feeding apparatus have significant electrotonic motoneuron-->interneuron connections, mainly confined to cells active in the same phase of the feeding cycle (protraction, rasp, or swallow). This suggested that the motoneurons participate in rhythm generation. This was assessed by manipulating firing activity in the motoneurons during maintained fictive feeding rhythms. Experiments showed that motoneurons contribute to the maintenance and phase setting of the feeding rhythm and provide an efficient system for phase-locking muscle activity with central neural activity. These data indicate that the distinction between motoneurons and interneurons in a complex CNS network like that involved in snail feeding is no longer justified and that both cell types are important in motor pattern generation. This is a distributed type of organization likely to be a general characteristic of CNS circuitries that produce rhythmic motor behavior.

摘要

在池塘蜗牛椎实螺(Lymnaea stagnalis)的摄食系统中,研究了运动神经元在中枢运动模式生成中的作用,椎实螺是行为节律生成的重要无脊椎动物模型。负责三相摄食运动程序(虚构摄食)的神经元网络已得到广泛表征,并分为中枢模式发生器(CPG)中间神经元、调制性中间神经元和运动神经元群体。先前的摄食系统模型认为,运动神经元是CPG中间神经元活动的被动跟随者。在此,我们提供了新的详细生理学证据,即支配摄食器官肌肉组织的运动神经元具有显著的电紧张性运动神经元→中间神经元连接,主要局限于在摄食周期同一阶段(伸展、锉磨或吞咽)活跃的细胞。这表明运动神经元参与节律生成。这是通过在维持虚构摄食节律期间操纵运动神经元的放电活动来评估的。实验表明,运动神经元有助于摄食节律的维持和相位设定,并为肌肉活动与中枢神经活动的锁相提供了一个有效的系统。这些数据表明,在像蜗牛摄食所涉及的那样复杂的中枢神经系统网络中,运动神经元和中间神经元之间的区分不再合理,并且这两种细胞类型在运动模式生成中都很重要。这是一种分布式组织类型,可能是产生节律性运动行为的中枢神经系统回路的一般特征。

相似文献

引用本文的文献

1
Vectorial principles of sensorimotor decoding.感觉运动解码的矢量原理
Front Hum Neurosci. 2025 Jul 7;19:1612626. doi: 10.3389/fnhum.2025.1612626. eCollection 2025.
4
What can we teach Lymnaea and what can Lymnaea teach us?我们能教给笠贝什么,而笠贝又能教给我们什么?
Biol Rev Camb Philos Soc. 2021 Aug;96(4):1590-1602. doi: 10.1111/brv.12716. Epub 2021 Apr 6.
7
Feedback Signal from Motoneurons Influences a Rhythmic Pattern Generator.来自运动神经元的反馈信号影响节律性模式发生器。
J Neurosci. 2017 Sep 20;37(38):9149-9159. doi: 10.1523/JNEUROSCI.0756-17.2017. Epub 2017 Aug 16.

本文引用的文献

8
Principles of rhythmic motor pattern generation.节律性运动模式生成的原理。
Physiol Rev. 1996 Jul;76(3):687-717. doi: 10.1152/physrev.1996.76.3.687.
10
A cholinergic modulatory interneuron in the feeding system of the snail, Lymnaea.
J Neurophysiol. 1993 Jul;70(1):37-50. doi: 10.1152/jn.1993.70.1.37.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验