Suppr超能文献

Detection of spikes with artificial neural networks using raw EEG.

作者信息

Ozdamar O, Kalayci T

机构信息

Department of Biomedical Engineering, University of Miami, Coral Gables, Florida 33124, USA.

出版信息

Comput Biomed Res. 1998 Apr;31(2):122-42. doi: 10.1006/cbmr.1998.1475.

Abstract

Artificial neural networks (ANN) using raw electroencephalogram (EEG) data were developed and tested off-line to detect transient epileptiform discharges (spike and spike/wave) and EMG activity in an ongoing EEG. In the present study, a feedforward ANN with a variable number of input and hidden layer units and two output units was used to optimize the detection system. The ANN system was trained and tested with the backpropagation algorithm using a large data set of exemplars. The effects of different EEG time windows and the number of hidden layer neurons were examined using rigorous statistical tests for optimum detection sensitivity and selectivity. The best ANN configuration occurred with an input time window of 150 msec (30 input units) and six hidden layer neurons. This input interval contained information on the wave component of the epileptiform discharge which improved detection. Two-dimensional receiver operating curves were developed to define the optimum threshold parameters for best detection. Comparison with previous networks using raw EEG showed improvement in both sensitivity and selectivity. This study showed that raw EEG can be successfully used to train ANNs to detect epileptogenic discharges with a high success rate without resorting to experimenter-selected parameters which may limit the efficiency of the system.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验