Sahni S K, Van Antwerp D J, Eremeeva M E, Silverman D J, Marder V J, Sporn L A
Department of Medicine, University of Rochester School of Medicine and Dentistry, New York 14642, USA.
Infect Immun. 1998 May;66(5):1827-33. doi: 10.1128/IAI.66.5.1827-1833.1998.
Interaction of many infectious agents with eukaryotic host cells is known to cause activation of the ubiquitous transcription factor nuclear factor kappaB (NF-kappaB) (U. Siebenlist, G. Franzoso, and K. Brown, Annu. Rev. Cell Biol. 10:405-455, 1994). Recently, we reported a biphasic pattern of NF-kappaB activation in cultured human umbilical vein endothelial cells consequent to infection with Rickettsia rickettsii, an obligate intracellular gram-negative bacterium and the etiologic agent of Rocky Mountain spotted fever (L. A. Sporn, S. K. Sahni, N. B. Lerner, V. J. Marder, D. J. Silverman, L. C. Turpin, and A. L. Schwab, Infect. Immun. 65:2786-2791, 1997). In the present study, we describe activation of NF-kappaB in a cell-free system, accomplished by addition of partially purified R. rickettsii to endothelial cell cytoplasmic extracts. This activation was rapid, reaching maximal levels at 60 min, and was dependent on the number of R. rickettsii organisms added. Antibody supershift assays using monospecific antisera against NF-kappaB subunits (p50 and p65) confirmed the authenticity of the gel-shifted complexes and identified both p50-p50 homodimers and p50-p65 heterodimers as constituents of the activated NF-kappaB pool. Activation occurred independently of the presence of endothelial cell membranes and was not inhibited by removal of the endothelial cell proteasome. Lack of involvement of the proteasome was further confirmed in assays using the peptide-aldehyde proteasome inhibitor MG 132. Activation was not ATP dependent since no change in activation resulted from addition of an excess of the unhydrolyzable ATP analog ATPgammaS, supplementation with exogenous ATP, or hydrolysis of endogenous ATP with ATPase. Furthermore, Western blot analysis before and after in vitro activation failed to demonstrate phosphorylation of serine 32 or degradation of the cytoplasmic pool of IkappaB alpha. This lack of IkappaB alpha involvement was supported by the finding that R. rickettsii can induce NF-kappaB activation in cytoplasmic extracts prepared from T24 bladder carcinoma cells and human embryo fibroblasts stably transfected with a superrepressor phosphorylation mutant of IkappaB alpha, rendering NF-kappaB inactivatable by many known signals. Thus, evidence is provided for a potentially novel NF-kappaB activation pathway wherein R. rickettsii may interact with and activate host cell transcriptional machinery independently of the involvement of the proteasome or known signal transduction pathways.
已知许多感染因子与真核宿主细胞的相互作用会导致普遍存在的转录因子核因子κB(NF-κB)被激活(U. 西本利斯特、G. 弗兰佐索和K. 布朗,《细胞生物学年度评论》10:405 - 455,1994年)。最近,我们报道了立氏立克次体感染培养的人脐静脉内皮细胞后NF-κB激活的双相模式,立氏立克次体是一种专性细胞内革兰氏阴性细菌,也是落基山斑疹热的病原体(L. A. 斯波恩、S. K. 萨尼、N. B. 勒纳、V. J. 马德、D. J. 西尔弗曼、L. C. 特平、A. L. 施瓦布,《感染与免疫》65:2786 - 2791,1997年)。在本研究中,我们描述了在无细胞系统中NF-κB的激活,这是通过向内皮细胞胞质提取物中添加部分纯化的立氏立克次体来实现的。这种激活迅速,在60分钟时达到最高水平,并且依赖于添加的立氏立克次体生物体的数量。使用针对NF-κB亚基(p50和p65)的单特异性抗血清进行的抗体超迁移分析证实了凝胶迁移复合物的真实性,并确定p50-p50同二聚体和p50-p65异二聚体都是活化的NF-κB池的组成成分。激活的发生与内皮细胞膜的存在无关,并且不会因去除内皮细胞蛋白酶体而受到抑制。在使用肽醛蛋白酶体抑制剂MG 132的分析中进一步证实了蛋白酶体未参与其中。激活不依赖于ATP,因为添加过量的不可水解的ATP类似物ATPγS、补充外源ATP或用ATP酶水解内源性ATP均未导致激活发生变化。此外,体外激活前后的蛋白质印迹分析未能证明丝氨酸32的磷酸化或IκBα胞质池的降解。立氏立克次体能够在由T24膀胱癌细胞和稳定转染了IκBα超抑制磷酸化突变体的人胚胎成纤维细胞制备的胞质提取物中诱导NF-κB激活,这一发现支持了IκBα未参与其中的观点,因为该突变体使NF-κB无法被许多已知信号激活。因此,有证据表明存在一种潜在的新型NF-κB激活途径,其中立氏立克次体可能独立于蛋白酶体或已知信号转导途径的参与而与宿主细胞转录机制相互作用并激活它。