Suppr超能文献

非洲猪瘟病毒重组体的诱导型基因表达:主要衣壳蛋白p72的分析

Inducible gene expression from African swine fever virus recombinants: analysis of the major capsid protein p72.

作者信息

García-Escudero R, Andrés G, Almazán F, Viñuela E

机构信息

Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Cientificas-Universidad Autónoma de Madrid), Facultad de Ciencias, Cantoblanco, Spain.

出版信息

J Virol. 1998 Apr;72(4):3185-95. doi: 10.1128/JVI.72.4.3185-3195.1998.

Abstract

A method to study the function of individual African swine fever virus (ASFV) gene products utilizing the Escherichia coli lac repressor-operator system has been developed. Recombinant viruses containing both the lacI gene encoding the lac repressor and a strong virus late promoter modified by the insertion of one or two copies of the lac operator sequence at various positions were constructed. The ability of each modified promoter to regulate expression of the firefly luciferase gene was assayed in the presence and in the absence of the inducer isopropyl beta-D-thiogalactoside (IPTG). Induction and repression of gene activity were dependent on the position(s) of the operator(s) with respect to the promoter and on the number of operators inserted. The ability of this system to regulate the expression of ASFV genes was analyzed by constructing a recombinant virus inducibly expressing the major capsid protein p72. Electron microscopy analysis revealed that under nonpermissive conditions, electron-dense membrane-like structures accumulated in the viral factories and capsid formation was inhibited. Induction of p72 expression allowed the progressive building of the capsid on these structures, leading to assembly of ASFV particles. The results of this report demonstrate that the transferred inducible expression system is a powerful tool for analyzing the function of ASFV genes.

摘要

一种利用大肠杆菌乳糖阻遏蛋白-操纵子系统研究非洲猪瘟病毒(ASFV)单个基因产物功能的方法已经开发出来。构建了重组病毒,这些病毒既包含编码乳糖阻遏蛋白的lacI基因,又包含一个强病毒晚期启动子,该启动子通过在不同位置插入一或两个拷贝的乳糖操纵序列进行了修饰。在存在和不存在诱导剂异丙基-β-D-硫代半乳糖苷(IPTG)的情况下,测定每个修饰启动子调节萤火虫荧光素酶基因表达的能力。基因活性的诱导和抑制取决于操纵序列相对于启动子的位置以及插入的操纵序列数量。通过构建可诱导表达主要衣壳蛋白p72的重组病毒,分析了该系统调节ASFV基因表达的能力。电子显微镜分析表明,在非允许条件下,电子致密的膜样结构在病毒工厂中积累,衣壳形成受到抑制。p72表达的诱导使得衣壳在这些结构上逐步形成,导致ASFV颗粒的组装。本报告结果表明,转移的诱导表达系统是分析ASFV基因功能的有力工具。

相似文献

7
Development of inducer-free expression plasmids based on IPTG-inducible promoters for Bacillus subtilis.
Microb Cell Fact. 2017 Jul 25;16(1):130. doi: 10.1186/s12934-017-0747-0.
8
Cryo-EM Structure of the African Swine Fever Virus.
Cell Host Microbe. 2019 Dec 11;26(6):836-843.e3. doi: 10.1016/j.chom.2019.11.004. Epub 2019 Nov 28.
9
Control of gene expression in tobacco cells using a bacterial operator-repressor system.
EMBO J. 1992 Apr;11(4):1251-9. doi: 10.1002/j.1460-2075.1992.tb05169.x.

引用本文的文献

1
Development and evaluation of two rapid lateral flow assays for on-site detection of African swine fever virus.
Front Microbiol. 2024 Aug 29;15:1429808. doi: 10.3389/fmicb.2024.1429808. eCollection 2024.
2
Development of plate-type and tubular chemiluminescence immunoassay against African swine fever virus p72.
Appl Microbiol Biotechnol. 2024 Aug 2;108(1):431. doi: 10.1007/s00253-024-13249-5.
3
-based visual assay integrating RPA and CRISPR/ for the detection of African swine fever virus.
Front Immunol. 2024 Apr 9;15:1358960. doi: 10.3389/fimmu.2024.1358960. eCollection 2024.
4
Porcine alveolar macrophages host proteins interacting with African swine fever virus p72.
Front Microbiol. 2024 Feb 28;15:1370417. doi: 10.3389/fmicb.2024.1370417. eCollection 2024.
5
African swine fever virus transmembrane protein pEP84R guides core assembly.
PLoS Pathog. 2023 Jan 30;19(1):e1011136. doi: 10.1371/journal.ppat.1011136. eCollection 2023 Jan.
6
ASFV Gene A151R Is Involved in the Process of Virulence in Domestic Swine.
Viruses. 2022 Aug 21;14(8):1834. doi: 10.3390/v14081834.
7
African Swine Fever Virus: A Review.
Life (Basel). 2022 Aug 17;12(8):1255. doi: 10.3390/life12081255.
8
Research progress on the proteins involved in African swine fever virus infection and replication.
Front Immunol. 2022 Jul 22;13:947180. doi: 10.3389/fimmu.2022.947180. eCollection 2022.
9
Structural Design and Assessing of Recombinantly Expressed African Swine Fever Virus p72 Trimer in .
Front Microbiol. 2022 Jun 14;13:802098. doi: 10.3389/fmicb.2022.802098. eCollection 2022.
10
ASFV pD345L protein negatively regulates NF-κB signalling by inhibiting IKK kinase activity.
Vet Res. 2022 Apr 23;53(1):32. doi: 10.1186/s13567-022-01050-z.

本文引用的文献

1
Electron microscope observations of African swine fever virus in tissue culture cells.
Virology. 1966 Mar;28(3):420-8. doi: 10.1016/0042-6822(66)90054-7.
2
Analysis of the complete nucleotide sequence of African swine fever virus.
Virology. 1995 Apr 1;208(1):249-78. doi: 10.1006/viro.1995.1149.
3
Proteolytic processing in African swine fever virus: evidence for a new structural polyprotein, pp62.
J Virol. 1997 Aug;71(8):5799-804. doi: 10.1128/JVI.71.8.5799-5804.1997.
5
Assembly of African swine fever virus: role of polyprotein pp220.
J Virol. 1997 Mar;71(3):2331-41. doi: 10.1128/JVI.71.3.2331-2341.1997.
7
Involvement of the endoplasmic reticulum in the assembly and envelopment of African swine fever virus.
J Virol. 1996 Dec;70(12):8382-90. doi: 10.1128/JVI.70.12.8382-8390.1996.
8
The structural protein p54 is essential for African swine fever virus viability.
Virus Res. 1996 Feb;40(2):161-7. doi: 10.1016/0168-1702(95)01268-0.
10
The African swine fever virus IAP homolog is a late structural polypeptide.
Virology. 1995 Dec 20;214(2):670-4. doi: 10.1006/viro.1995.0083.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验