Suppr超能文献

影响Himar1水手转座子体外转座的因素。

Factors affecting transposition of the Himar1 mariner transposon in vitro.

作者信息

Lampe D J, Grant T E, Robertson H M

机构信息

Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.

出版信息

Genetics. 1998 May;149(1):179-87. doi: 10.1093/genetics/149.1.179.

Abstract

Mariner family transposable elements are widespread in animals, but their regulation is poorly understood, partly because only two are known to be functional. These are particular copies of the Dmmar1 element from Drosophila mauritiana, for example, Mos1, and the consensus sequence of the Himar1 element from the horn fly, Haematobia irritans. An in vitro transposition system was refined to investigate several parameters that influence the transposition of Himar1. Transposition products accumulated linearly over a period of 6 hr. Transposition frequency increased with temperature and was dependent on Mg2+ concentration. Transposition frequency peaked over a narrow range of transposase concentration. The decline at higher concentrations, a phenomenon observed in vivo with Mos1, supports the suggestion that mariners may be regulated in part by "overproduction inhibition." Transposition frequency decreased exponentially with increasing transposon size and was affected by the sequence of the flanking DNA of the donor site. A noticeable bias in target site usage suggests a preference for insertion into bent or bendable DNA sequences rather than any specific nucleotide sequences beyond the TA target site.

摘要

水手家族转座元件在动物中广泛存在,但其调控机制却鲜为人知,部分原因是已知只有两个元件具有功能。例如,来自毛里求斯果蝇的Dmmar1元件的特定拷贝Mos1,以及来自角蝇(嗜人血蝇)的Himar1元件的共有序列。一种体外转座系统得到了优化,以研究影响Himar1转座的几个参数。转座产物在6小时内呈线性积累。转座频率随温度升高而增加,并且依赖于Mg2+浓度。转座频率在转座酶浓度的一个狭窄范围内达到峰值。在较高浓度下出现下降,这一在Mos1体内观察到的现象支持了水手元件可能部分受“过量产生抑制”调控的观点。转座频率随转座子大小增加呈指数下降,并且受供体位点侧翼DNA序列的影响。在靶位点使用上存在明显偏差,这表明其倾向于插入弯曲或可弯曲的DNA序列,而不是TA靶位点之外的任何特定核苷酸序列。

相似文献

1
Factors affecting transposition of the Himar1 mariner transposon in vitro.
Genetics. 1998 May;149(1):179-87. doi: 10.1093/genetics/149.1.179.
4
Regulation of mariner transposition: the peculiar case of Mos1.
PLoS One. 2012;7(8):e43365. doi: 10.1371/journal.pone.0043365. Epub 2012 Aug 14.
5
Hyperactive transposase mutants of the Himar1 mariner transposon.
Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11428-33. doi: 10.1073/pnas.96.20.11428.
6
Factors acting on Mos1 transposition efficiency.
BMC Mol Biol. 2008 Nov 26;9:106. doi: 10.1186/1471-2199-9-106.
7
Transposition of Mboumar-9: identification of a new naturally active mariner-family transposon.
J Mol Biol. 2008 Oct 10;382(3):567-72. doi: 10.1016/j.jmb.2008.07.044. Epub 2008 Jul 23.
9
Transposition of fly mariner elements into bacteria as a genetic tool for mutagenesis.
Genetica. 2010 May;138(5):551-8. doi: 10.1007/s10709-009-9408-5. Epub 2009 Sep 13.
10
DNA-binding activity and subunit interaction of the mariner transposase.
Nucleic Acids Res. 2001 Sep 1;29(17):3566-75. doi: 10.1093/nar/29.17.3566.

引用本文的文献

1
Analysis of Essential Genes in by CRISPRi and Tn-seq.
bioRxiv. 2025 Jun 9:2025.06.04.657922. doi: 10.1101/2025.06.04.657922.
2
Transposon-directed insertion-site sequencing (TraDIS) analysis of using nanopore sequencing and a WebAssembly analysis platform.
Microbiol Spectr. 2025 Jul;13(7):e0062825. doi: 10.1128/spectrum.00628-25. Epub 2025 Jun 10.
3
A platform supporting generation and isolation of random transposon mutants in .
J Bacteriol. 2025 Mar 20;207(3):e0050024. doi: 10.1128/jb.00500-24. Epub 2025 Feb 14.
4
Shedding light on bacteria-host interactions with the aid of TnSeq approaches.
mBio. 2024 Jun 12;15(6):e0039024. doi: 10.1128/mbio.00390-24. Epub 2024 May 9.
6
Identification of Genes Required for Long-Term Survival of in Water.
mSphere. 2023 Apr 20;8(2):e0045422. doi: 10.1128/msphere.00454-22. Epub 2023 Mar 29.
7
Surviving the host: Microbial metabolic genes required for growth of in physiologically-relevant conditions.
Front Microbiol. 2022 Nov 25;13:1055512. doi: 10.3389/fmicb.2022.1055512. eCollection 2022.
8
Transposon control as a checkpoint for tissue regeneration.
Development. 2022 Nov 15;149(22). doi: 10.1242/dev.191957. Epub 2022 Nov 28.
9
BosR: A novel biofilm-specific regulator in .
Front Microbiol. 2022 Oct 13;13:1021021. doi: 10.3389/fmicb.2022.1021021. eCollection 2022.
10
Transposon mutagenesis in oral .
J Oral Microbiol. 2022 Jul 24;14(1):2104951. doi: 10.1080/20002297.2022.2104951. eCollection 2022.

本文引用的文献

2
Transposition of the Hermes element in embryos of the vector mosquito, Aedes aegypti.
Insect Biochem Mol Biol. 1997 May;27(5):359-63. doi: 10.1016/s0965-1748(97)00018-0.
3
Trans-kingdom transposition of the Drosophila element mariner within the protozoan Leishmania.
Science. 1997 Jun 13;276(5319):1716-9. doi: 10.1126/science.276.5319.1716.
4
What restricts the activity of mariner-like transposable elements.
Trends Genet. 1997 May;13(5):197-201. doi: 10.1016/s0168-9525(97)01087-1.
5
DNA binding and phasing analyses of Tn5 transposase and a monomeric variant.
Nucleic Acids Res. 1997 Jun 1;25(11):2153-60. doi: 10.1093/nar/25.11.2153.
6
Bmmar1: a basal lineage of the mariner family of transposable elements in the silkworm moth, Bombyx mori.
Insect Biochem Mol Biol. 1996 Sep-Oct;26(8-9):945-54. doi: 10.1016/s0965-1748(96)00061-6.
8
Autoregulation of mariner transposase activity by overproduction and dominant-negative complementation.
Mol Biol Evol. 1996 Apr;13(4):549-55. doi: 10.1093/oxfordjournals.molbev.a025615.
9
Reduced germline mobility of a mariner vector containing exogenous DNA: effect of size or site?
Genetics. 1996 Jul;143(3):1299-306. doi: 10.1093/genetics/143.3.1299.
10
Germline transformation of Drosophila virilis with the transposable element mariner.
Genetics. 1996 May;143(1):365-74. doi: 10.1093/genetics/143.1.365.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验