Edelstein-Keshet L, Ermentrout G B
Department of Mathematics, University of British Columbia, Vancouver, Canada.
Bull Math Biol. 1998 May;60(3):449-75. doi: 10.1006/bulm.1997.0011.
We studied mathematical models for the length distributions of actin filaments under the effects of polymerization/depolymerization, and fragmentation. In this paper, we emphasize the effects of these two processes acting alone. In this case, simple discrete and continuous models can be derived and solved explicitly (in several special cases), making the problem interesting from a modeling and pedagogical point of view. In a companion paper (Ermentrout and Edelstein-Keshet, 1998, Bull. Math. Biol. 60, 477-503) we investigate what happens when the processes act together, with particular attention to fragmentation by gelsolin, and with a greater level of biological detail.
我们研究了在聚合/解聚和断裂作用下肌动蛋白丝长度分布的数学模型。在本文中,我们着重研究这两个过程单独作用时的影响。在这种情况下,可以推导出简单的离散和连续模型,并(在几种特殊情况下)明确求解,从建模和教学的角度来看,这个问题很有意思。在一篇配套论文中(Ermentrout和Edelstein-Keshet,1998年,《数学生物学公报》60卷,477 - 503页),我们研究了这两个过程共同作用时会发生什么,特别关注凝溶胶蛋白引起的断裂,并涉及更详细的生物学细节。