Proshlyakov D A, Pressler M A, Babcock G T
Chemistry Department and Laser Laboratory, Michigan State University, East Lansing, Michigan 48824-1322, USA.
Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8020-5. doi: 10.1073/pnas.95.14.8020.
Elucidating the structures of intermediates in the reduction of O2 to water by cytochrome c oxidase is crucial to understanding both oxygen activation and proton pumping by the enzyme. In the work here, the reaction of O2 with the mixed-valence enzyme, in which only heme a3 and CuB in the binuclear center are reduced, has been followed by time-resolved resonance Raman spectroscopy. The results show that O==O bond cleavage occurs within the first 200 micros after reaction initiation; the presence of a uniquely stable Fe---O---O(H) peroxy species is not detected. The product of this rapid reaction is a heme a3 oxoferryl (FeIV==O) species, which requires that an electron donor in addition to heme a3 and CuB must be involved. The available evidence suggests that the additional donor is an amino acid side chain. Recent crystallographic data [Yoshikawa, S., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., Yamashita, E., Inoue, N., Yao, M., Fei, M. J., Libeu, C. P., Mizushima, T., et al. Science, in press; Ostermeier, C., Harrenga, A. , Ermler, U. & Michel, H. (1997) Proc. Natl. Acad. Sci. USA 94, 10547-10553] show that one of the CuB ligands, His240, is cross-linked to Tyr244 and that this cross-linked tyrosyl is ideally positioned to participate in dioxygen activation. We propose a mechanism for O---O bond cleavage that proceeds by concerted hydrogen atom transfer from the cross-linked His---Tyr species to produce the product oxoferryl species, CuB2+---OH-, and the tyrosyl radical. This mechanism provides molecular structures for two key intermediates that drive the proton pump in oxidase; moreover, it has clear analogies to the proposed O---O bond forming chemistry that occurs during O2 evolution in photosynthesis.
阐明细胞色素c氧化酶将O₂还原为水过程中中间体的结构,对于理解该酶的氧活化和质子泵功能都至关重要。在本文的研究中,利用时间分辨共振拉曼光谱跟踪了O₂与混合价态酶的反应,在该混合价态酶中只有双核中心的血红素a3和CuB被还原。结果表明,O==O键在反应开始后的前200微秒内发生断裂;未检测到独特稳定的Fe---O---O(H)过氧物种的存在。这个快速反应的产物是血红素a3氧合铁(FeIV==O)物种,这表明除了血红素a3和CuB外,还必须有一个电子供体参与。现有证据表明,额外的供体是一个氨基酸侧链。最近的晶体学数据[吉川,S.,新泽-伊藤,K.,中岛,R.,矢野,R.,山下,E.,井上,N.,姚,M.,费,M. J.,利贝乌,C. P.,水岛,T.等。《科学》,即将发表;奥斯特迈尔,C.,哈伦加,A.,埃尔默勒,U.和米歇尔,H.(1997年)《美国国家科学院院刊》94,10547 - 10553]表明,CuB配体之一His240与Tyr244交联,并且这个交联的酪氨酸残基处于理想位置参与双氧活化。我们提出了一种O---O键断裂的机制,该机制通过从交联的His---Tyr物种协同转移氢原子来进行,以产生产物氧合铁物种、CuB2+---OH-和酪氨酸自由基。该机制为氧化酶中驱动质子泵的两个关键中间体提供了分子结构;此外,它与光合作用中O₂释放过程中提出的O---O键形成化学有明显的相似之处。