Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA; email:
Annu Rev Biophys. 2022 May 9;51:453-471. doi: 10.1146/annurev-biophys-100521-103031. Epub 2022 Feb 8.
Some oxidoreductase enzymes use redox-active tyrosine, tryptophan, cysteine, and/or glycine residues as one-electron, high-potential redox (radical) cofactors. Amino-acid radical cofactors typically perform one of four tasks-they work in concert with a metallocofactor to carry out a multielectron redox process, serve as storage sites for oxidizing equivalents, activate the substrate molecules, or move oxidizing equivalents over long distances. It is challenging to experimentally resolve the thermodynamic and kinetic redox properties of a single-amino-acid residue. The inherently reactive and highly oxidizing properties of amino-acid radicals increase the experimental barriers further still. This review describes a family of stable and well-structured model proteins that was made specifically to study tyrosine and tryptophan oxidation-reduction. The so-called αX model protein system was combined with very-high-potential protein film voltammetry, transient absorption spectroscopy, and theoretical methods to gain a comprehensive description of the thermodynamic and kinetic properties of protein tyrosine and tryptophan radicals.
一些氧化还原酶利用氧化还原活性的酪氨酸、色氨酸、半胱氨酸和/或甘氨酸残基作为单电子、高电势氧化还原(自由基)辅因子。氨基酸自由基辅因子通常执行以下四项任务之一:与金属辅因子协同作用进行多电子氧化还原过程,充当氧化当量的储存位点,激活底物分子,或长距离传递氧化当量。实验上很难解析单个氨基酸残基的热力学和动力学氧化还原性质。氨基酸自由基的固有反应性和强氧化性进一步增加了实验障碍。这篇综述描述了一类稳定且结构良好的模型蛋白,这些模型蛋白是专门用来研究酪氨酸和色氨酸氧化还原的。所谓的 αX 模型蛋白系统与超高电势蛋白膜伏安法、瞬态吸收光谱和理论方法相结合,全面描述了蛋白质酪氨酸和色氨酸自由基的热力学和动力学性质。