Suppr超能文献

蛋白质中氨基酸自由基的热力学和动力学研究进展。

Insights into the Thermodynamics and Kinetics of Amino-Acid Radicals in Proteins.

机构信息

Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA; email:

出版信息

Annu Rev Biophys. 2022 May 9;51:453-471. doi: 10.1146/annurev-biophys-100521-103031. Epub 2022 Feb 8.

Abstract

Some oxidoreductase enzymes use redox-active tyrosine, tryptophan, cysteine, and/or glycine residues as one-electron, high-potential redox (radical) cofactors. Amino-acid radical cofactors typically perform one of four tasks-they work in concert with a metallocofactor to carry out a multielectron redox process, serve as storage sites for oxidizing equivalents, activate the substrate molecules, or move oxidizing equivalents over long distances. It is challenging to experimentally resolve the thermodynamic and kinetic redox properties of a single-amino-acid residue. The inherently reactive and highly oxidizing properties of amino-acid radicals increase the experimental barriers further still. This review describes a family of stable and well-structured model proteins that was made specifically to study tyrosine and tryptophan oxidation-reduction. The so-called αX model protein system was combined with very-high-potential protein film voltammetry, transient absorption spectroscopy, and theoretical methods to gain a comprehensive description of the thermodynamic and kinetic properties of protein tyrosine and tryptophan radicals.

摘要

一些氧化还原酶利用氧化还原活性的酪氨酸、色氨酸、半胱氨酸和/或甘氨酸残基作为单电子、高电势氧化还原(自由基)辅因子。氨基酸自由基辅因子通常执行以下四项任务之一:与金属辅因子协同作用进行多电子氧化还原过程,充当氧化当量的储存位点,激活底物分子,或长距离传递氧化当量。实验上很难解析单个氨基酸残基的热力学和动力学氧化还原性质。氨基酸自由基的固有反应性和强氧化性进一步增加了实验障碍。这篇综述描述了一类稳定且结构良好的模型蛋白,这些模型蛋白是专门用来研究酪氨酸和色氨酸氧化还原的。所谓的 αX 模型蛋白系统与超高电势蛋白膜伏安法、瞬态吸收光谱和理论方法相结合,全面描述了蛋白质酪氨酸和色氨酸自由基的热力学和动力学性质。

相似文献

1
Insights into the Thermodynamics and Kinetics of Amino-Acid Radicals in Proteins.
Annu Rev Biophys. 2022 May 9;51:453-471. doi: 10.1146/annurev-biophys-100521-103031. Epub 2022 Feb 8.
2
The function and characteristics of tyrosyl radical cofactors.
Biochim Biophys Acta. 2004 Apr 12;1655(1-3):116-22. doi: 10.1016/j.bbabio.2003.10.017.
4
Exploring amino-acid radical chemistry: protein engineering and de novo design.
Biochim Biophys Acta. 2005 Feb 25;1707(1):103-16. doi: 10.1016/j.bbabio.2004.02.013.
5
Could tyrosine and tryptophan serve multiple roles in biological redox processes?
Philos Trans A Math Phys Eng Sci. 2015 Mar 13;373(2037). doi: 10.1098/rsta.2014.0178.
6
Reversible, long-range radical transfer in E. coli class Ia ribonucleotide reductase.
Acc Chem Res. 2013 Nov 19;46(11):2524-35. doi: 10.1021/ar4000407. Epub 2013 Jun 4.
8
Understanding the Reactivity of CO and NO Radicals toward S-Containing and Aromatic Amino Acids.
J Phys Chem B. 2017 Aug 17;121(32):7621-7632. doi: 10.1021/acs.jpcb.7b05186. Epub 2017 Aug 3.

引用本文的文献

2
Hydroxyl Radical-π Interaction in a Single Crystal.
JACS Au. 2025 Jan 9;5(1):61-66. doi: 10.1021/jacsau.4c01115. eCollection 2025 Jan 27.
3
Proton-Coupled Electron Transfer upon Oxidation of Tyrosine in a De Novo Protein: Analysis of Proton Acceptor Candidates.
Biochemistry. 2024 Aug 6;63(15):1999-2008. doi: 10.1021/acs.biochem.4c00211. Epub 2024 Jul 18.
4
Hydrogen production by a fully enzyme.
Dalton Trans. 2024 Aug 6;53(31):12905-12916. doi: 10.1039/d4dt00936c.
5
Mutational dissection of a hole hopping route in a lytic polysaccharide monooxygenase (LPMO).
Nat Commun. 2024 May 10;15(1):3975. doi: 10.1038/s41467-024-48245-w.
6
Switching the proton-coupled electron transfer mechanism for non-canonical tyrosine residues in a protein.
Chem Sci. 2024 Jan 25;15(11):3957-3970. doi: 10.1039/d3sc05450k. eCollection 2024 Mar 13.
9
Proximal Methionine Amino Acid Residue Affects the Properties of Redox-Active Tryptophan in an Artificial Model Protein.
ACS Omega. 2023 May 22;8(22):19798-19806. doi: 10.1021/acsomega.3c01589. eCollection 2023 Jun 6.
10
Study and design of amino acid-based radical enzymes using unnatural amino acids.
RSC Chem Biol. 2023 May 18;4(6):431-446. doi: 10.1039/d2cb00250g. eCollection 2023 Jun 7.

本文引用的文献

1
Proton-Coupled Electron Transfer Guidelines, Fair and Square.
J Am Chem Soc. 2021 Jan 20;143(2):560-576. doi: 10.1021/jacs.0c09106. Epub 2021 Jan 6.
2
Computing Proton-Coupled Redox Potentials of Fluorotyrosines in a Protein Environment.
J Phys Chem B. 2021 Jan 14;125(1):128-136. doi: 10.1021/acs.jpcb.0c09974. Epub 2020 Dec 30.
4
Redox Biochemistry of the Genetic Code.
Trends Biochem Sci. 2021 Feb;46(2):83-86. doi: 10.1016/j.tibs.2020.10.008. Epub 2020 Nov 27.
5
Biology and biotechnology of microbial pilus nanowires.
J Ind Microbiol Biotechnol. 2020 Oct;47(9-10):897-907. doi: 10.1007/s10295-020-02312-5. Epub 2020 Oct 3.
6
Activation of O and NO in heme-copper oxidases - mechanistic insights from computational modelling.
Chem Soc Rev. 2020 Oct 19;49(20):7301-7330. doi: 10.1039/d0cs00877j.
8
Structural and Chemical Biology of the Interaction of Cyclooxygenase with Substrates and Non-Steroidal Anti-Inflammatory Drugs.
Chem Rev. 2020 Aug 12;120(15):7592-7641. doi: 10.1021/acs.chemrev.0c00215. Epub 2020 Jul 1.
9
Light-driven catalysis with engineered enzymes and biomimetic systems.
Biotechnol Appl Biochem. 2020 Jul;67(4):463-483. doi: 10.1002/bab.1976. Epub 2020 Jul 5.
10
Ribonucleotide Reductases: Structure, Chemistry, and Metabolism Suggest New Therapeutic Targets.
Annu Rev Biochem. 2020 Jun 20;89:45-75. doi: 10.1146/annurev-biochem-013118-111843.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验