Suppr超能文献

针对膜离子通道实际几何形状的泊松方程的解析解。

Analytical solutions of Poisson's equation for realistic geometrical shapes of membrane ion channels.

作者信息

Kuyucak S, Hoyles M, Chung S H

机构信息

Department of Theoretical Physics, Research School of Physical Sciences, Australian National University, Canberra, ACT.

出版信息

Biophys J. 1998 Jan;74(1):22-36. doi: 10.1016/S0006-3495(98)77763-X.

Abstract

Analytical solutions of Poisson's equations satisfying the Dirichlet boundary conditions for a toroidal dielectric boundary are presented. The electric potential computed anywhere in the toroidal conduit by the analytical method agrees with the value derived from an iterative numerical method. We show that three different channel geometries, namely, bicone, catenary, and toroid, give similar potential profiles as an ion traverses along their central axis. We then examine the effects of dipoles in the toroidal channel wall on the potential profile of ions passing through the channel. The presence of dipoles eliminates the barrier for one polarity of ion, while raising the barrier for ions of the opposite polarity. We also examine how a uniform electric field from an external source is affected by the protein boundary and a mobile charge. The channel distorts the field, reducing it in the vestibules, and enhancing it in the constricted segment. The presence of an ion in one vestibule effectively excludes ions of the same polarity from that vestibule, but has little effect in the other vestibule. Finally, we discuss how the solutions we provide here may be utilized to simulate a system containing a channel and many interacting ions.

摘要

给出了满足环形电介质边界狄利克雷边界条件的泊松方程的解析解。通过解析方法计算出的环形管道内任意位置的电势与通过迭代数值方法得出的值一致。我们表明,三种不同的通道几何形状,即双锥、悬链线和环形,在离子沿其中心轴移动时具有相似的电势分布。然后,我们研究了环形通道壁中的偶极子对通过通道的离子电势分布的影响。偶极子的存在消除了一种极性离子的势垒,同时提高了相反极性离子的势垒。我们还研究了来自外部源的均匀电场如何受到蛋白质边界和移动电荷的影响。通道使电场发生畸变,在前庭区域减弱电场,而在收缩段增强电场。一个前庭中存在离子有效地排除了该前庭中相同极性的离子,但对另一个前庭影响很小。最后,我们讨论了如何利用我们这里提供的解来模拟包含一个通道和许多相互作用离子的系统。

相似文献

1
Analytical solutions of Poisson's equation for realistic geometrical shapes of membrane ion channels.
Biophys J. 1998 Jan;74(1):22-36. doi: 10.1016/S0006-3495(98)77763-X.
2
Energy barrier presented to ions by the vestibule of the biological membrane channel.
Biophys J. 1996 Apr;70(4):1628-42. doi: 10.1016/S0006-3495(96)79726-6.
3
Brownian dynamics study of ion transport in the vestibule of membrane channels.
Biophys J. 1998 Jan;74(1):37-47. doi: 10.1016/S0006-3495(98)77764-1.
4
Study of ionic currents across a model membrane channel using Brownian dynamics.
Biophys J. 1998 Aug;75(2):793-809. doi: 10.1016/S0006-3495(98)77569-1.
5
Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Sep;64(3 Pt 2):036116. doi: 10.1103/PhysRevE.64.036116. Epub 2001 Aug 28.
6
Effect of channel geometry on the electrostatic potential in acetylcholine channels.
Math Biosci. 2003 Dec;186(2):175-89. doi: 10.1016/j.mbs.2003.08.008.
7
Comparison of three-dimensional poisson solution methods for particle-based simulation and inhomogeneous dielectrics.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jul;86(1 Pt 1):011912. doi: 10.1103/PhysRevE.86.011912. Epub 2012 Jul 12.
8
Physical descriptions of experimental selectivity measurements in ion channels.
Eur Biophys J. 2002 Oct;31(6):454-66. doi: 10.1007/s00249-002-0239-x. Epub 2002 Jul 16.
9
Exact continuum solution for a channel that can be occupied by two ions.
Biophys J. 1987 Sep;52(3):455-66. doi: 10.1016/S0006-3495(87)83234-4.
10
Role of the dielectric constants of membrane proteins and channel water in ion permeation.
Biophys J. 2003 May;84(5):2871-82. doi: 10.1016/S0006-3495(03)70015-0.

引用本文的文献

1
Approaching the 5-HT₃ receptor heterogeneity by computational studies of the transmembrane and intracellular domains.
J Comput Aided Mol Des. 2013 Jun;27(6):491-509. doi: 10.1007/s10822-013-9658-2. Epub 2013 Jun 16.
2
Electrostatic influence on ion transport through the alphaHL channel.
J Membr Biol. 2003 Oct 1;195(3):137-46. doi: 10.1007/s00232-003-0615-1.
3
Role of the dielectric constants of membrane proteins and channel water in ion permeation.
Biophys J. 2003 May;84(5):2871-82. doi: 10.1016/S0006-3495(03)70015-0.
4
A fast in silico simulation of ion flux through the large-pore channel proteins.
Biophys J. 2002 Dec;83(6):3001-11. doi: 10.1016/S0006-3495(02)75306-X.
6
Reservoir boundaries in Brownian dynamics simulations of ion channels.
Biophys J. 2002 Apr;82(4):1975-84. doi: 10.1016/S0006-3495(02)75546-X.
7
Permeation of ions across the potassium channel: Brownian dynamics studies.
Biophys J. 1999 Nov;77(5):2517-33. doi: 10.1016/S0006-3495(99)77087-6.
8
Dynamic properties of Na+ ions in models of ion channels: a molecular dynamics study.
Biophys J. 1998 Dec;75(6):2767-82. doi: 10.1016/S0006-3495(98)77720-3.
9
Study of ionic currents across a model membrane channel using Brownian dynamics.
Biophys J. 1998 Aug;75(2):793-809. doi: 10.1016/S0006-3495(98)77569-1.

本文引用的文献

1
Brownian dynamics study of ion transport in the vestibule of membrane channels.
Biophys J. 1998 Jan;74(1):37-47. doi: 10.1016/S0006-3495(98)77764-1.
2
Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel.
Biophys J. 1997 Jan;72(1):97-116. doi: 10.1016/S0006-3495(97)78650-8.
3
Energy barrier presented to ions by the vestibule of the biological membrane channel.
Biophys J. 1996 Apr;70(4):1628-42. doi: 10.1016/S0006-3495(96)79726-6.
5
Electrostatic modeling of ion pores. Energy barriers and electric field profiles.
Biophys J. 1982 Aug;39(2):157-64. doi: 10.1016/S0006-3495(82)84503-7.
6
Electrostatic modeling of ion pores. II. Effects attributable to the membrane dipole potential.
Biophys J. 1983 Feb;41(2):189-95. doi: 10.1016/S0006-3495(83)84419-1.
7
Energy barriers for passage of ions through channels. Exact solution of two electrostatic problems.
Biophys Chem. 1981 Jun;13(3):203-12. doi: 10.1016/0301-4622(81)80002-6.
8
The structure of ion channels in membranes of excitable cells.
Neuron. 1989 Dec;3(6):665-76. doi: 10.1016/0896-6273(89)90235-3.
9
Ion channel of acetylcholine receptor reconstructed from images of postsynaptic membranes.
Nature. 1988 Nov 17;336(6196):247-50. doi: 10.1038/336247a0.
10
Ion transport in a model gramicidin channel. Structure and thermodynamics.
Biophys J. 1991 May;59(5):961-81. doi: 10.1016/S0006-3495(91)82311-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验