Suppr超能文献

通过纳米制造悬臂测量的分离粗肌丝的弹性特性。

Elastic properties of isolated thick filaments measured by nanofabricated cantilevers.

作者信息

Neumann T, Fauver M, Pollack G H

机构信息

Department of Bioengineering, University of Washington, Seattle, Washington 98195 USA.

出版信息

Biophys J. 1998 Aug;75(2):938-47. doi: 10.1016/S0006-3495(98)77582-4.

Abstract

Using newly developed nanofabricated cantilever force transducers, we have measured the mechanical properties of isolated thick filaments from the anterior byssus retractor muscle of the blue mussel Mytilus edulis and the telson levator muscle of the horseshoe crab Limulus polyphemus. The single thick filament specimen was suspended between the tip of a flexible cantilever and the tip of a stiff reference beam. Axial stress was placed on the filament, which bent the flexible cantilever. Cantilever tips were microscopically imaged onto a photodiode array to extract tip positions, which could be converted into force by using the cantilever stiffness value. Length changes up to 23% initial length (Mytilus) and 66% initial length (Limulus) were fully reversible and took place within the physiological force range. When stretch exceeded two to three times initial length (Mytilus) or five to six times initial length (Limulus), at forces approximately 18 nN and approximately 7 nN, respectively, the filaments broke. Appreciable and reversible strain within the physiological force range implies that thick-filament length changes could play a significant physiological role, at least in invertebrate muscles.

摘要

我们使用新开发的纳米制造悬臂力传感器,测量了蓝贻贝(Mytilus edulis)前足丝收缩肌和鲎(Limulus polyphemus)尾节提肌中分离出的粗肌丝的力学性能。单个粗肌丝标本悬挂在柔性悬臂的尖端和刚性参考梁的尖端之间。轴向应力作用于肌丝,使其弯曲柔性悬臂。通过显微镜将悬臂尖端成像到光电二极管阵列上,以提取尖端位置,利用悬臂刚度值可将其转换为力。长度变化高达初始长度的23%(贻贝)和66%(鲎)是完全可逆的,且发生在生理力范围内。当拉伸超过初始长度的两到三倍(贻贝)或五到六倍(鲎)时,分别在约18 nN和约7 nN的力作用下,肌丝断裂。在生理力范围内明显且可逆的应变表明,粗肌丝长度变化可能至少在无脊椎动物肌肉中发挥重要的生理作用。

相似文献

1
Elastic properties of isolated thick filaments measured by nanofabricated cantilevers.
Biophys J. 1998 Aug;75(2):938-47. doi: 10.1016/S0006-3495(98)77582-4.
2
Stepwise length changes in single invertebrate thick filaments.
Biophys J. 2005 Nov;89(5):3269-76. doi: 10.1529/biophysj.105.069864. Epub 2005 Aug 19.
3
Changes in thick filament length in Limulus striated muscle.
J Cell Biol. 1977 Nov;75(2 Pt 1):366-80. doi: 10.1083/jcb.75.2.366.
6
Structure of Limulus and other invertebrate thick filaments.
Adv Exp Med Biol. 1984;170:93-106. doi: 10.1007/978-1-4684-4703-3_9.
10
Limulus striated muscle provides an unusual model for muscle contraction.
Adv Exp Med Biol. 1984;170:67-87. doi: 10.1007/978-1-4684-4703-3_7.

引用本文的文献

1
The load dependence and the force-velocity relation in intact myosin filaments from skeletal and smooth muscles.
Am J Physiol Cell Physiol. 2020 Jan 1;318(1):C103-C110. doi: 10.1152/ajpcell.00339.2019. Epub 2019 Oct 16.
2
Emergent spatiotemporal dynamics of the actomyosin network in the presence of chemical gradients.
Integr Biol (Camb). 2019 Jun 1;11(6):280-292. doi: 10.1093/intbio/zyz023.
3
Emergent mechanics of actomyosin drive punctuated contractions and shape network morphology in the cell cortex.
PLoS Comput Biol. 2018 Sep 17;14(9):e1006344. doi: 10.1371/journal.pcbi.1006344. eCollection 2018 Sep.
4
The effects of Ca2+ and MgADP on force development during and after muscle length changes.
PLoS One. 2013 Jul 16;8(7):e68866. doi: 10.1371/journal.pone.0068866. Print 2013.
5
Rotational model for actin filament alignment by myosin.
J Theor Biol. 2012 May 7;300:344-59. doi: 10.1016/j.jtbi.2012.01.036. Epub 2012 Feb 5.
6
Comparative biomechanics of thick filaments and thin filaments with functional consequences for muscle contraction.
J Biomed Biotechnol. 2010;2010:473423. doi: 10.1155/2010/473423. Epub 2010 Jun 6.
7
Molecular basis of the catch state in molluscan smooth muscles: a catchy challenge.
J Muscle Res Cell Motil. 2008;29(2-5):73-99. doi: 10.1007/s10974-008-9149-6. Epub 2008 Nov 28.
8
Pre-power stroke cross bridges contribute to force during stretch of skeletal muscle myofibrils.
Proc Biol Sci. 2008 Nov 22;275(1651):2577-86. doi: 10.1098/rspb.2008.0719.
9
Invertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle.
Prog Neurobiol. 2008 Oct;86(2):72-127. doi: 10.1016/j.pneurobio.2008.06.004. Epub 2008 Jun 20.
10
Stepwise length changes in single invertebrate thick filaments.
Biophys J. 2005 Nov;89(5):3269-76. doi: 10.1529/biophysj.105.069864. Epub 2005 Aug 19.

本文引用的文献

1
CONTRACTION OF THE A BAND.
J Ultrastruct Res. 1963 Aug;49:156-65. doi: 10.1016/s0022-5320(63)80043-x.
2
Microfabricated cantilevers for measurement of subcellular and molecular forces.
IEEE Trans Biomed Eng. 1998 Jul;45(7):891-8. doi: 10.1109/10.686797.
4
Stretching single protein molecules: titin is a weird spring.
Science. 1997 May 16;276(5315):1090-2. doi: 10.1126/science.276.5315.1090.
5
Elasticity and unfolding of single molecules of the giant muscle protein titin.
Nature. 1997 May 15;387(6630):308-12. doi: 10.1038/387308a0.
6
Folding-unfolding transitions in single titin molecules characterized with laser tweezers.
Science. 1997 May 16;276(5315):1112-6. doi: 10.1126/science.276.5315.1112.
7
Actin filament mechanics in the laser trap.
J Muscle Res Cell Motil. 1997 Feb;18(1):17-30. doi: 10.1023/a:1018672631256.
8
Filament compliance and tension transients in muscle.
J Muscle Res Cell Motil. 1996 Aug;17(4):507-11. doi: 10.1007/BF00123366.
9
Ultrastructural studies on paramyosin core filaments from native thick filaments in catch muscles.
Tissue Cell. 1996 Aug;28(4):501-5. doi: 10.1016/s0040-8166(96)80036-x.
10
Myosin-specific adaptations of the motility assay.
Methods Cell Biol. 1993;39:23-49. doi: 10.1016/s0091-679x(08)60159-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验