Suppr超能文献

来自不同环境的特定核糖体DNA序列与实验污染物相关。

Specific ribosomal DNA sequences from diverse environmental settings correlate with experimental contaminants.

作者信息

Tanner M A, Goebel B M, Dojka M A, Pace N R

机构信息

Departments of Plant and Microbial Biology and Molecular and Cell Biology, University of California, Berkeley, California 94720-3102, USA.

出版信息

Appl Environ Microbiol. 1998 Aug;64(8):3110-3. doi: 10.1128/AEM.64.8.3110-3113.1998.

Abstract

Phylogenetic analysis of 16S ribosomal DNA (rDNA) clones obtained by PCR from uncultured bacteria inhabiting a wide range of environments has increased our knowledge of bacterial diversity. One possible problem in the assessment of bacterial diversity based on sequence information is that PCR is exquisitely sensitive to contaminating 16S rDNA. This raises the possibility that some putative environmental rRNA sequences in fact correspond to contaminant sequences. To document potential contaminants, we cloned and sequenced PCR-amplified 16S rDNA fragments obtained at low levels in the absence of added template DNA. 16S rDNA sequences closely related to the genera Duganella (formerly Zoogloea), Acinetobacter, Stenotrophomonas, Escherichia, Leptothrix, and Herbaspirillum were identified in contaminant libraries and in clone libraries from diverse, generally low-biomass habitats. The rRNA sequences detected possibly are common contaminants in reagents used to prepare genomic DNA. Consequently, their detection in processed environmental samples may not reflect environmentally relevant organisms.

摘要

通过聚合酶链反应(PCR)从栖息于广泛环境中的未培养细菌获得的16S核糖体DNA(rDNA)克隆的系统发育分析,增加了我们对细菌多样性的了解。基于序列信息评估细菌多样性时,一个可能的问题是PCR对污染的16S rDNA极其敏感。这增加了一些推测的环境rRNA序列实际上对应于污染序列的可能性。为了记录潜在的污染物,我们克隆并测序了在不添加模板DNA的情况下以低水平获得的PCR扩增16S rDNA片段。在污染物文库以及来自不同的、通常生物量较低的栖息地的克隆文库中,鉴定出了与杜氏菌属(以前的动胶菌属)、不动杆菌属、嗜麦芽窄食单胞菌属、大肠杆菌属、纤发菌属和草螺菌属密切相关的16S rDNA序列。检测到的rRNA序列可能是用于制备基因组DNA的试剂中的常见污染物。因此,它们在处理过的环境样品中的检测可能无法反映与环境相关的生物体。

相似文献

1
Specific ribosomal DNA sequences from diverse environmental settings correlate with experimental contaminants.
Appl Environ Microbiol. 1998 Aug;64(8):3110-3. doi: 10.1128/AEM.64.8.3110-3113.1998.
4
6
New perspective on uncultured bacterial phylogenetic division OP11.
Appl Environ Microbiol. 2004 Feb;70(2):845-9. doi: 10.1128/AEM.70.2.845-849.2004.
7
Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis.
Microb Ecol. 2008 Apr;55(3):415-24. doi: 10.1007/s00248-007-9287-1. Epub 2007 Aug 10.
8
Bacterial diversity of a Carolina bay as determined by 16S rRNA gene analysis: confirmation of novel taxa.
Appl Environ Microbiol. 1997 Apr;63(4):1505-14. doi: 10.1128/aem.63.4.1505-1514.1997.
10
Microvariation artifacts introduced by PCR and cloning of closely related 16S rRNA gene sequences.
Appl Environ Microbiol. 2001 Jan;67(1):469-72. doi: 10.1128/AEM.67.1.469-472.2001.

引用本文的文献

1
Perinatal factors influencing the earliest establishment of the infant microbiome.
Microbiome Res Rep. 2025 Jun 12;4(2):24. doi: 10.20517/mrr.2024.92. eCollection 2025.
4
First encounters of the microbial kind: perinatal factors direct infant gut microbiome establishment.
Microbiome Res Rep. 2022 Mar 1;1(2):10. doi: 10.20517/mrr.2021.09. eCollection 2022.
5
Benchmarking MicrobIEM - a user-friendly tool for decontamination of microbiome sequencing data.
BMC Biol. 2023 Nov 23;21(1):269. doi: 10.1186/s12915-023-01737-5.
6
Urban endoliths: incidental microbial communities occurring inside concrete.
AIMS Microbiol. 2023 Mar 30;9(2):277-312. doi: 10.3934/microbiol.2023016. eCollection 2023.
7
Contamination detection and microbiome exploration with GRIMER.
Gigascience. 2022 Dec 28;12. doi: 10.1093/gigascience/giad017. Epub 2023 Mar 30.
8
Gallbladder microbiota in healthy dogs and dogs with mucocele formation.
PLoS One. 2023 Feb 10;18(2):e0281432. doi: 10.1371/journal.pone.0281432. eCollection 2023.
9
Plasma cfDNA predictors of established bacteraemic infection.
Access Microbiol. 2022 Jun 14;4(6):acmi000373. doi: 10.1099/acmi.0.000373. eCollection 2022 Aug.
10

本文引用的文献

1
Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation.
Appl Environ Microbiol. 1998 Oct;64(10):3869-77. doi: 10.1128/AEM.64.10.3869-3877.1998.
2
Recovery of humic-reducing bacteria from a diversity of environments.
Appl Environ Microbiol. 1998 Apr;64(4):1504-9. doi: 10.1128/AEM.64.4.1504-1509.1998.
4
Novel division level bacterial diversity in a Yellowstone hot spring.
J Bacteriol. 1998 Jan;180(2):366-76. doi: 10.1128/JB.180.2.366-376.1998.
5
Phylogenetic diversity of a bacterial community determined from Siberian tundra soil DNA.
Microbiology (Reading). 1997 Dec;143 ( Pt 12):3913-3919. doi: 10.1099/00221287-143-12-3913.
6
GenBank.
Nucleic Acids Res. 1998 Jan 1;26(1):1-7. doi: 10.1093/nar/26.1.1.
8
Molecular diagnosis of bacterial endocarditis by broad-range PCR amplification and direct sequencing.
J Clin Microbiol. 1997 Nov;35(11):2733-9. doi: 10.1128/jcm.35.11.2733-2739.1997.
9
Proposal to reclassify Zoogloea ramigera IAM 12670 (P. R. Dugan 115) as Duganella zoogloeoides gen. nov., sp. nov.
Int J Syst Bacteriol. 1997 Oct;47(4):1249-52. doi: 10.1099/00207713-47-4-1249.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验