Hoja U, Wellein C, Greiner E, Schweizer E
Lehrstuhl für Biochemie, Universität Erlangen-Nürnberg, Erlangen, Germany.
Eur J Biochem. 1998 Jun 15;254(3):520-6. doi: 10.1046/j.1432-1327.1998.2540520.x.
The Saccharomyces cerevisiae gene BPL1 encodes the enzyme biotin:protein ligase (BPL), which is required for acetyl-CoA carboxylase (ACC) holoenzyme formation. Disruption of one of the two BPL1 alleles present in diploid cells results, upon sporulation, in a 2+:2(0) segregation of cell viability, with none of the two viable spores being BPL1 negative. In contrast to BPL1 deletants, BPL1 base-substitution mutants are potentially viable and may be isolated as long-chain-fatty-acid-requiring auxotrophs. In addition to ACC pyruvate carboxylase and an additional biotin-containing protein of unknown function fail to be biotinylated in BPL1-defective yeast mutants. In this study, one of these mutants, bpl1-C25/17, is shown to contain an amber stop codon at position 151 of the 689-amino-acid BPL sequence. In bpl1-C25/17 cells, de novo fatty acid synthesis is almost absent (< 2% of the wild type), while very-long-chain fatty acid (VLCFA) synthesis and, to some extent, medium-long-chain fatty acid elongation are still active. Hence, endogenous malonyl-CoA synthesis is reduced but not abolished by the translational stop mutation. A low rate of intact-BPL synthesis is accomplished in the mutant by occasional readthrough of the bpl1-C25/17 UAG nonsense triplet by normal yeast tRNA(Gln)(CAG). Correspondingly, ACC biotinylation is severely reduced though not completely absent in the two bpl1 mutants studied in this work. Residual BPL1 expression in bpl1-C25/17 cells is increased to a level allowing wild-type-like growth by transformation with high copy numbers of either the wild-type tRNA(Gln)(CAG) or the mutant bpl1-C25/17 genes. It is concluded that the lethality of BPL1 deletants is due to the lack of malonyl-CoA-dependent VLCFA synthesis and that the viability of distinct ACC-defective point mutants is due to their maintenance of a critical level of malonyl-CoA and, hence, VLCFA production. The residual capacity of malonyl-CoA synthesis, though, is inadequate to allow cytoplasmic bulk de novo fatty acid synthesis, nor does it support mutant growth on 13:0 as the only dietary fatty acid. ACC-defective mutants are respiratory deficient, which is attributed to the failure of mitochondrial fatty acid synthesis. Since lipoic acid levels of ACC1 and BPL1 mutants are essentially normal, an unknown product of mitochondrial fatty acid synthesis appears to be critically reduced in malonyl-CoA-deficient yeast cells.
酿酒酵母基因BPL1编码生物素:蛋白质连接酶(BPL),该酶是乙酰辅酶A羧化酶(ACC)全酶形成所必需的。二倍体细胞中存在的两个BPL1等位基因之一被破坏后,在孢子形成时,细胞活力会出现2+:2(0)的分离,两个存活的孢子中没有一个是BPL1阴性的。与BPL1缺失突变体不同,BPL1碱基替换突变体可能是存活的,并且可以作为需要长链脂肪酸的营养缺陷型分离出来。除了ACC外,丙酮酸羧化酶和另一种功能未知的含生物素蛋白在BPL1缺陷的酵母突变体中不能被生物素化。在本研究中,其中一个突变体bpl1-C25/17在689个氨基酸的BPL序列的第151位含有一个琥珀色终止密码子。在bpl1-C25/17细胞中,从头脂肪酸合成几乎不存在(<野生型的2%),而超长链脂肪酸(VLCFA)合成以及在一定程度上的中长链脂肪酸延长仍然活跃。因此,内源性丙二酰辅酶A合成减少,但翻译终止突变并未将其完全消除。通过正常酵母tRNA(Gln)(CAG)偶尔通读bpl1-C25/17 UAG无义三联体,突变体中实现了低水平完整BPL的合成。相应地,在本研究中所研究的两个bpl1突变体中,ACC生物素化严重减少但并未完全缺失。通过用高拷贝数的野生型tRNA(Gln)(CAG)或突变体bpl1-C25/17基因进行转化,bpl1-C25/17细胞中残留的BPL1表达增加到允许野生型样生长的水平。得出的结论是,BPL1缺失突变体致死是由于缺乏丙二酰辅酶A依赖性VLCFA合成,而不同的ACC缺陷型点突变体的存活是由于它们维持了临界水平的丙二酰辅酶A,从而维持了VLCFA的产生。然而,丙二酰辅酶A合成的残留能力不足以允许细胞质大量从头脂肪酸合成,也不能支持突变体以13:0作为唯一膳食脂肪酸的生长。ACC缺陷型突变体呼吸缺陷,这归因于线粒体脂肪酸合成的失败。由于ACC1和BPL1突变体的硫辛酸水平基本正常,线粒体脂肪酸合成的一种未知产物在丙二酰辅酶A缺乏酵母细胞中似乎显著减少。