Rahman I, Bel A, Mulier B, Donaldson K, MacNee W
The Rayne Laboratory, Respiratory Medicine Unit, Department of Medicine, University of Edinburgh, Edinburgh EH8 9AG, United Kingdom.
Am J Physiol. 1998 Jul;275(1):L80-6. doi: 10.1152/ajplung.1998.275.1.L80.
We studied the regulation of GSH and the enzymes involved in GSH regulation, gamma-glutamylcysteine synthetase (gamma-GCS) and gamma-glutamyl transpeptidase (gamma-GT), in response to the oxidants menadione, xanthine/xanthine oxidase, hyperoxia, and cigarette smoke condensate in human alveolar epithelial cells (A549). Menadione (100 microM), xanthine/xanthine oxidase (50 microM/10 mU), and cigarette smoke condensate (10%) exposure produced increased GSH levels (240 +/- 6, 202 +/- 12, and 191 +/- 2 nmol/mg protein, respectively; P < 0.001) compared with the control level (132 +/- 8 nmol/mg protein), which were associated with a significant increase in gamma-GCS activity (0.18 +/- 0.006, 0.16 +/- 0.01, and 0.17 +/- 0. 008 U/mg protein, respectively; P < 0.01) compared with the control level (0.08 +/- 0.001 U/mg protein) at 24 h. Exposure to hyperoxia (95% O2) resulted in a time-dependent increase in GSH levels. gamma-GCS activity increased significantly at 4 h (P < 0.001), returning to control values after 12 h of exposure. Dexamethasone (3 microM) exposure produced a significant time-dependent decrease in the levels of GSH and gamma-GCS activity at 24-96 h. The activity of gamma-GT did not change after oxidant treatment; however, it was decreased significantly by dexamethasone at 24-96 h. Thus oxidants and dexamethasone modulate GSH levels and activities of gamma-GT and gamma-GCS by different mechanisms. We suggest that the increase in gamma-GCS activity but not in gamma-GT activity may be required for the increase in intracellular GSH under oxidative stress in alveolar epithelial cells.
我们研究了人类肺泡上皮细胞(A549)中谷胱甘肽(GSH)以及参与GSH调节的酶,即γ-谷氨酰半胱氨酸合成酶(γ-GCS)和γ-谷氨酰转肽酶(γ-GT),对氧化剂甲萘醌、黄嘌呤/黄嘌呤氧化酶、高氧和香烟烟雾冷凝物的反应。与对照水平(132±8 nmol/mg蛋白质)相比,甲萘醌(100μM)、黄嘌呤/黄嘌呤氧化酶(50μM/10 mU)和香烟烟雾冷凝物(10%)暴露使GSH水平升高(分别为240±6、202±12和191±2 nmol/mg蛋白质;P<0.001),这与24小时时γ-GCS活性显著增加(分别为0.18±0.006、0.16±0.01和0.17±0.008 U/mg蛋白质;P<0.01)有关,而对照水平为(0.08±0.001 U/mg蛋白质)。暴露于高氧(95% O2)导致GSH水平随时间增加。γ-GCS活性在4小时时显著增加(P<0.001),暴露12小时后恢复到对照值。地塞米松(3μM)暴露在24至96小时使GSH水平和γ-GCS活性随时间显著降低。氧化剂处理后γ-GT活性未改变;然而,地塞米松在24至96小时使其显著降低。因此,氧化剂和地塞米松通过不同机制调节GSH水平以及γ-GT和γ-GCS的活性。我们认为,肺泡上皮细胞在氧化应激下细胞内GSH增加可能需要γ-GCS活性增加而非γ-GT活性增加。