Bachmann B O, Li R, Townsend C A
Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9082-6. doi: 10.1073/pnas.95.16.9082.
The principal cause of bacterial resistance to penicillin and other beta-lactam antibiotics is the acquisition of plasmid-encoded beta-lactamases, enzymes that catalyze hydrolysis of the beta-lactam bond and render these antibiotics inactive. Clavulanic acid is a potent inhibitor of beta-lactamases and has proven clinically effective in combating resistant infections. Although clavulanic acid and penicillin share marked structural similarities, the biosyntheses of their bicyclic nuclei are wholly dissimilar. In contrast to the efficient iron-mediated oxidative cyclization of a tripeptide to isopenicillin N, the critical beta-lactam ring of clavulanic acid is demonstrated to form by intramolecular closure catalyzed by a new type of ATP/Mg2+-dependent enzyme, a beta-lactam synthetase (beta-LS). Insertional inactivation of its encoding gene in wild-type Streptomyces clavuligerus resulted in complete loss of clavulanic acid production and the accumulation of N2-(carboxyethyl)-L-arginine (CEA). Chemical complementation of this blocked mutant with authentic deoxyguanidinoproclavaminic acid (DGPC), the expected product of the beta-LS, restored clavulanic acid synthesis. Finally, overexpression of this gene gave the beta-LS, which was shown to mediate the conversion of CEA to DGPC in the presence of ATP/Mg2+. Primary amino acid sequence comparisons suggest that this mode of beta-lactam formation could be more widely spread in nature and mechanistically related to asparagine synthesis.
细菌对青霉素和其他β-内酰胺类抗生素产生耐药性的主要原因是获得了质粒编码的β-内酰胺酶,这些酶催化β-内酰胺键的水解,使这些抗生素失活。克拉维酸是一种有效的β-内酰胺酶抑制剂,已在临床上证明对对抗耐药性感染有效。尽管克拉维酸和青霉素在结构上有明显的相似之处,但其双环核的生物合成却完全不同。与三肽通过铁介导的高效氧化环化生成异青霉素N不同,克拉维酸的关键β-内酰胺环是由一种新型的ATP/Mg2+依赖性酶——β-内酰胺合成酶(β-LS)催化的分子内闭环形成的。在野生型棒状链霉菌中其编码基因的插入失活导致克拉维酸产量完全丧失和N2-(羧乙基)-L-精氨酸(CEA)的积累。用真正的脱氧胍基原克拉维酸(DGPC),即β-LS的预期产物,对这个阻断突变体进行化学互补,恢复了克拉维酸的合成。最后,该基因的过表达产生了β-LS,在ATP/Mg2+存在的情况下,β-LS被证明能介导CEA向DGPC的转化。一级氨基酸序列比较表明,这种β-内酰胺形成方式可能在自然界中更广泛地存在,并且在机制上与天冬酰胺合成有关。