Suppr超能文献

Cyclin-dependent kinase 5 and mitogen-activated protein kinase in glial cytoplasmic inclusions in multiple system atrophy.

作者信息

Nakamura S, Kawamoto Y, Nakano S, Akiguchi I, Kimura J

机构信息

Department of Neurology, Faculty of Medicine, Kyoto University, Japan.

出版信息

J Neuropathol Exp Neurol. 1998 Jul;57(7):690-8. doi: 10.1097/00005072-199807000-00006.

Abstract

Glial cytoplasmic inclusions (GCI) characteristically occur in the oligodendrocytes of patients with multiple system atrophy (MSA). However, the molecular mechanisms underlying GCI formation are unknown. To investigate whether these inclusions are related to proline-directed protein kinases that have been associated with neuronal inclusion bodies in some other neurodegenerative diseases, we immunohistochemically probed tissue samples from MSA brains with a panel of antibodies against cyclin-dependent kinases and mitogen-activated protein kinase. We unexpectedly detected cyclin-dependent kinase 5- (cdk5) and mitogen-activated protein kinase- (MAPK) immunoreactivities in GCI. We also found TAU1 immunoreactivity in GCI, and a strong expression of microtubule-associated protein (MAP) 2 immunoreactivity in oligodendrocytes of MSA brains. This immunoreactivity was not observed in the normal or neurological controls. The accumulated evidence suggest a close association between GCI and the microtubular cytoskeleton. Cdk5 phosphorylates tau and MAP2, and MAPK is capable of phosphorylating MAP2. The present results suggest that the aberrant or ectopic expression of cdk5 and MAPK causes abnormal phosphorylation of microtubular cytoskeletal proteins, thus leading to GCI formation in affected oligodendrocytes.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验