Suppr超能文献

模拟培养大鼠运动神经元树突中的动作电位起始和逆向传播。

Modeling action potential initiation and back-propagation in dendrites of cultured rat motoneurons.

作者信息

Lüscher H R, Larkum M E

机构信息

Department of Physiology, University of Bern, CH-3012 Bern, Switzerland.

出版信息

J Neurophysiol. 1998 Aug;80(2):715-29. doi: 10.1152/jn.1998.80.2.715.

Abstract

Regardless of the site of current injection, action potentials usually originate at or near the soma and propagate decrementally back into the dendrites. This phenomenon has been observed in neocortical pyramidal cells as well as in cultured motoneurons. Here we show that action potentials in motoneurons can be initiated in the dendrite as well, resulting in a biphasic dendritic action potential. We present a model of spinal motoneurons that is consistent with observed physiological properties of spike initiation in the initial segment/axon hillock region and action potential back-propagation into the dendritic tree. It accurately reproduces the results presented by Larkum et al. on motoneurons in organotypic rat spinal cord slice cultures. A high Na+-channel density of Na = 700 mS/cm2 at the axon hillock/initial segment region was required to secure antidromic invasion of the somato-dendritic membrane, whereas for the orthodromic direction, a Na+-channel density of Na = 1,200 mS/cm2 was required. A "weakly" excitable (Na = 3 mS/cm2) dendritic membrane most accurately describes the experimentally observed attenuation of the back-propagated action potential. Careful analysis of the threshold conditions for action potential initiation at the initial segment or the dendrites revealed that, despite the lower voltage threshold for spike initiation in the initial segment, an action potential can be initiated in the dendrite before the initial segment fires a spike. Spike initiation in the dendrite depends on the passive cable properties of the dendritic membrane, its Na+-channel density, and local structural properties, mainly the diameter of the dendrites. Action potentials are initiated more easily in distal than in proximal dendrites. Whether or not such a dendritic action potential invades the soma with a subsequent initiation of a second action potential in the initial segment depends on the actual current source-load relation between the action potential approaching the soma and the electrical load of the soma together with the attached dendrites.

摘要

无论当前注射部位如何,动作电位通常起源于胞体或其附近,并以递减的方式向树突逆向传播。这种现象在新皮层锥体细胞以及培养的运动神经元中都有观察到。在这里,我们表明运动神经元中的动作电位也可以在树突中起始,从而产生双相树突动作电位。我们提出了一个脊髓运动神经元模型,该模型与在初始节段/轴丘区域观察到的动作电位起始的生理特性以及动作电位向树突树的逆向传播一致。它准确地再现了Larkum等人在器官型大鼠脊髓切片培养中的运动神经元上呈现的结果。为确保躯体 - 树突膜的逆向侵入,轴丘/初始节段区域需要高的钠通道密度,即Na = 700 mS/cm²,而对于顺向传播方向,则需要Na = 1,200 mS/cm²的钠通道密度。“弱”可兴奋(Na = 3 mS/cm²)的树突膜最准确地描述了实验观察到的逆向传播动作电位的衰减。对初始节段或树突处动作电位起始的阈值条件进行仔细分析后发现,尽管初始节段中动作电位起始的电压阈值较低,但在初始节段发放动作电位之前,树突中也可以起始动作电位。树突中的动作电位起始取决于树突膜的被动电缆特性、其钠通道密度以及局部结构特性,主要是树突的直径。动作电位在远端树突中比在近端树突中更容易起始。这样的树突动作电位是否会侵入胞体并随后在初始节段引发第二个动作电位,取决于接近胞体的动作电位与胞体连同附着树突的电负载之间的实际电流源 - 负载关系。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验