Irastorza-Valera Luis, Benítez José María, Montáns Francisco J, Saucedo-Mora Luis
E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain.
PIMM Laboratory, Arts et Métiers Institute of Technology, 151 Bd de l'Hôpital, 75013 Paris, France.
Biomimetics (Basel). 2024 Feb 9;9(2):101. doi: 10.3390/biomimetics9020101.
The human brain is arguably the most complex "machine" to ever exist. Its detailed functioning is yet to be fully understood, let alone modelled. Neurological processes have logical signal-processing and biophysical aspects, and both affect the brain's structure, functioning and adaptation. Mathematical approaches based on both information and graph theory have been extensively used in an attempt to approximate its biological functioning, along with Artificial Intelligence frameworks inspired by its logical functioning. In this article, an approach to model some aspects of the brain learning and signal processing is presented, mimicking the metastability and backpropagation found in the real brain while also accounting for neuroplasticity. Several simulations are carried out with this model to demonstrate how dynamic neuroplasticity, neural inhibition and neuron migration can reshape the brain's logical connectivity to synchronise signal processing and obtain certain target latencies. This work showcases the importance of dynamic logical and biophysical remodelling in brain plasticity. Combining mathematical (agents, graph theory, topology and backpropagation) and biomedical ingredients (metastability, neuroplasticity and migration), these preliminary results prove complex brain phenomena can be reproduced-under pertinent simplifications-via affordable computations, which can be construed as a starting point for more ambitiously accurate simulations.
可以说,人类大脑是有史以来最复杂的“机器”。其详细的功能尚未被完全理解,更不用说进行建模了。神经过程具有逻辑信号处理和生物物理方面,两者都会影响大脑的结构、功能和适应性。基于信息论和图论的数学方法已被广泛用于尝试近似其生物学功能,同时还有受其逻辑功能启发的人工智能框架。在本文中,提出了一种对大脑学习和信号处理的某些方面进行建模的方法,该方法模仿了真实大脑中发现的亚稳定性和反向传播,同时也考虑了神经可塑性。使用该模型进行了几次模拟,以展示动态神经可塑性、神经抑制和神经元迁移如何重塑大脑的逻辑连接,从而使信号处理同步并获得特定的目标延迟。这项工作展示了动态逻辑和生物物理重塑在大脑可塑性中的重要性。结合数学(智能体、图论、拓扑学和反向传播)和生物医学要素(亚稳定性、神经可塑性和迁移),这些初步结果证明,在适当简化的情况下,可以通过可承受的计算来重现复杂的大脑现象,这可以被视为更精确模拟的起点。