Suppr超能文献

一个关于不同基于微管的驱动蛋白在建立纺锤体双极性中所提议作用的模型。

A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity.

作者信息

Walczak C E, Vernos I, Mitchison T J, Karsenti E, Heald R

机构信息

Department of Cellular and Molecular Pharmacology University of California San Francisco, California, 94143, USA.

出版信息

Curr Biol. 1998;8(16):903-13. doi: 10.1016/s0960-9822(07)00370-3.

Abstract

BACKGROUND

In eukaryotes, assembly of the mitotic spindle requires the interaction of chromosomes with microtubules. During this process, several motor proteins that move along microtubules promote formation of a bipolar microtubule array, but the precise mechanism is unclear. In order to examine the roles of different motor proteins in building a bipolar spindle, we have used a simplified system in which spindles assemble around beads coated with plasmid DNA and incubated in extracts from Xenopus eggs. Using this system, we can study spindle assembly in the absence of paired cues, such as centrosomes and kinetochores, whose microtubule-organizing properties might mask the action of motor proteins.

RESULTS

We blocked the function of individual motor proteins in the Xenopus extracts using specific antibodies. Inhibition of Xenopus kinesin-like protein 1 (Xklp1) led either to the dissociation of chromatin beads from microtubule arrays, or to collapsed microtubule bundles on beads. Inhibition of Eg5 resulted in monopolar microtubule arrays emanating from chromatin beads. Addition of antibodies against dynein inhibited the focusing of microtubule ends into spindle poles in a dose-dependent manner. Inhibition of Xenopus carboxy-terminal kinesin 2 (XCTK2) affected both pole formation and spindle stability. Co-inhibition of XCTK2 and dynein dramatically increased the severity of spindle pole defects. Inhibition of Xklp2 caused only minor spindle pole defects.

CONCLUSIONS

Multiple microtubule-based motor activities are required for the bipolar organization of microtubules around chromatin beads, and we propose a model for the roles of the individual motor proteins in this process.

摘要

背景

在真核生物中,有丝分裂纺锤体的组装需要染色体与微管相互作用。在此过程中,几种沿微管移动的驱动蛋白促进双极微管阵列的形成,但具体机制尚不清楚。为了研究不同驱动蛋白在构建双极纺锤体中的作用,我们使用了一个简化系统,其中纺锤体围绕涂有质粒DNA的珠子组装,并在非洲爪蟾卵提取物中孵育。利用这个系统,我们可以在没有成对线索(如中心体和动粒)的情况下研究纺锤体组装,这些微管组织特性可能会掩盖驱动蛋白的作用。

结果

我们使用特异性抗体阻断了非洲爪蟾提取物中单个驱动蛋白的功能。抑制非洲爪蟾类驱动蛋白1(Xklp1)导致染色质珠从微管阵列解离,或导致珠子上的微管束塌陷。抑制Eg5导致从染色质珠发出单极微管阵列。添加抗动力蛋白抗体以剂量依赖方式抑制微管末端聚焦到纺锤体极中。抑制非洲爪蟾羧基末端驱动蛋白2(XCTK2)影响纺锤体极的形成和纺锤体稳定性。共同抑制XCTK2和动力蛋白显著增加了纺锤体极缺陷的严重程度。抑制Xklp2仅导致轻微的纺锤体极缺陷。

结论

围绕染色质珠的微管双极组织需要多种基于微管的驱动活动,我们提出了一个在此过程中单个驱动蛋白作用的模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验