Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany.
Curr Biol. 2010 Apr 27;20(8):763-9. doi: 10.1016/j.cub.2010.02.067. Epub 2010 Apr 15.
During cell division, correct positioning of chromosomes in mitotic and meiotic spindles depends on interactions of microtubules with kinetochores and, especially in higher eukaryotes, with the chromosome arms [1, 2]. Chromokinesins, highly concentrated on mitotic and meiotic chromatin, are thought to actively push the chromosome arms toward the spindle center, thereby contributing to chromosome alignment at the metaphase plate in early mitosis [1-9]. How many distinct classes of chromokinesins exist and how they cooperate to form a motile chromatin-microtubule interface are not known. Using a novel experimental assay with nonkinetochore chromatin reconstituted from Xenopus egg extract, we demonstrate that the microtubule motility generated on chromatin is continuous and plus-end directed. Using specific antibody depletions, we identify two distinct chromokinesins, kinesin-10 (Xkid) [8, 10, 11] and kinesin-4 (Xklp1) [12, 13], as the major activities mediating the interaction of meiotic chromatin with microtubules. Interestingly, we find that the slower motor, kinesin-10, more efficiently recruits microtubules and also dominates in collective microtubule transport both in the close-to-physiological environment of chromatin and also in a minimal in vitro assay. Our results provide an identification of the molecular activities involved in the generation of motor protein-mediated chromosome arm motility and yield mechanistic insight into the cooperation of the two major chromokinesins.
在细胞分裂过程中,染色体在有丝分裂和减数分裂纺锤体中的正确定位取决于微管与动粒的相互作用,尤其是在高等真核生物中,还取决于与染色体臂的相互作用[1,2]。染色质驱动蛋白高度集中在有丝分裂和减数分裂染色质上,被认为能够主动将染色体臂推向纺锤体中心,从而有助于在早期有丝分裂中期将染色体排列在赤道板上[1-9]。目前尚不清楚存在多少种不同类别的染色质驱动蛋白,以及它们如何合作形成一个能动的染色质-微管界面。利用一种新颖的实验测定方法,使用从非洲爪蟾卵提取物中重建的非动粒染色质,我们证明了在染色质上产生的微管运动是连续的和正极指向的。通过特异性抗体耗竭实验,我们鉴定出两种不同的染色质驱动蛋白,驱动蛋白-10(Xkid)[8,10,11]和驱动蛋白-4(Xklp1)[12,13],作为介导减数分裂染色质与微管相互作用的主要活性物质。有趣的是,我们发现速度较慢的驱动蛋白-10能够更有效地招募微管,并且在接近生理环境的染色质和最小的体外测定中,也在集体微管运输中占据主导地位。我们的研究结果为产生马达蛋白介导的染色体臂运动的分子活性提供了一个鉴定,并为两种主要的染色质驱动蛋白的合作提供了机制上的见解。