B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, 01307, Dresden, Germany.
BASS Center, Molecular Biophysics and Biochemistry Department, Yale University, 06511, New Haven, USA.
EMBO J. 2024 Apr;43(7):1244-1256. doi: 10.1038/s44318-024-00048-x. Epub 2024 Feb 29.
During mitosis, motor proteins and microtubule-associated protein organize the spindle apparatus by cross-linking and sliding microtubules. Kinesin-5 plays a vital role in spindle formation and maintenance, potentially inducing twist in the spindle fibers. The off-axis power stroke of kinesin-5 could generate this twist, but its implications in microtubule organization remain unclear. Here, we investigate 3D microtubule-microtubule sliding mediated by the human kinesin-5, KIF11, and found that the motor caused right-handed helical motion of anti-parallel microtubules around each other. The sidestepping ratio increased with reduced ATP concentration, indicating that forward and sideways stepping of the motor are not strictly coupled. Further, the microtubule-microtubule distance (motor extension) during sliding decreased with increasing sliding velocity. Intriguingly, parallel microtubules cross-linked by KIF11 orbited without forward motion, with nearly full motor extension. Altering the length of the neck linker increased the forward velocity and pitch of microtubules in anti-parallel overlaps. Taken together, we suggest that helical motion and orbiting of microtubules, driven by KIF11, contributes to flexible and context-dependent filament organization, as well as torque regulation within the mitotic spindle.
在有丝分裂过程中,马达蛋白和微管相关蛋白通过交联和滑动微管来组织纺锤体装置。驱动蛋白-5 在纺锤体形成和维持中起着至关重要的作用,可能会导致纺锤体纤维扭曲。驱动蛋白-5 的非轴向动力冲程可能会产生这种扭曲,但它在微管组织中的影响尚不清楚。在这里,我们研究了由人源驱动蛋白-5(KIF11)介导的 3D 微管-微管滑动,并发现该马达导致了彼此相反的平行微管的右手螺旋运动。随着 ATP 浓度的降低,侧向步幅比增加,表明马达的向前和侧向步幅不是严格耦合的。此外,滑动过程中微管-微管的距离(马达延伸)随着滑动速度的增加而减小。有趣的是,由 KIF11 交联的平行微管在没有向前运动的情况下旋转,几乎完全延伸了马达。改变颈连接体的长度会增加平行重叠微管的向前速度和螺距。总之,我们认为由 KIF11 驱动的微管的螺旋运动和旋转有助于灵活和依赖于上下文的纤维组织,以及有丝分裂纺锤体内部的扭矩调节。