Suppr超能文献

二阶听觉和前庭神经元中的钾电流与兴奋性

Potassium currents and excitability in second-order auditory and vestibular neurons.

作者信息

Peusner K D, Gamkrelidze G, Giaume C

机构信息

Department of Anatomy and Cell Biology, George Washington University Medical Center, Washington, DC 20037, USA.

出版信息

J Neurosci Res. 1998 Sep 1;53(5):511-20. doi: 10.1002/(SICI)1097-4547(19980901)53:5<511::AID-JNR1>3.0.CO;2-C.

Abstract

Potassium channels are involved in the control of neuronal excitability by fixing the membrane potential, shaping the action potential, and setting firing rates. Recently, attention has been focused on identifying the factors influencing excitability in second-order auditory and vestibular neurons. Located in the brainstem, second-order auditory and vestibular neurons are sites for convergence of inputs from first-order auditory or vestibular ganglionic cells with other sensory systems and also motor areas. Typically, second-order auditory neurons exhibit two distinct firing patterns in response to depolarization: tonic, with a repetitive firing of action potentials, and phasic, characterized by only one or a few action potentials. In contrast, all mature vestibular second-order neurons fire tonically on depolarization. Already, certain fundamental roles have emerged for potassium currents in these neurons. In mature auditory and vestibular neurons, I(K), the delayed rectifier, is required for the fast repolarization of action potentials. In tonically firing auditory neurons, I(A), the transient outward rectifier, defines the discharge pattern. I(DS), a delayed rectifier-like current distinguished by its low threshold of activation, is found in phasically firing auditory and some developing vestibular neurons where it limits firing to one or a few spikes, and also may contribute to forming short-duration excitatory postsynaptic potential (EPSPs). Also, I(DS) sets the threshold for action potential generation rather high, which may prevent spontaneous discharge in phasically firing cells. During development, there is a gradual acquisition and loss of some potassium conductances, suggesting developmental regulation. As there are similarities in membrane properties of second-order auditory and vestibular neurons, investigations on firing pattern and its underlying mechanisms in one system should help to uncover fundamental properties of the other.

摘要

钾通道通过固定膜电位、塑造动作电位和设定放电频率来参与神经元兴奋性的控制。最近,注意力集中在确定影响二阶听觉和前庭神经元兴奋性的因素上。二阶听觉和前庭神经元位于脑干,是来自一阶听觉或前庭神经节细胞的输入与其他感觉系统以及运动区域汇聚的部位。通常,二阶听觉神经元在去极化时表现出两种不同的放电模式:紧张性放电,即动作电位重复发放;相位性放电,其特征是仅产生一个或几个动作电位。相比之下,所有成熟的前庭二阶神经元在去极化时均进行紧张性放电。在这些神经元中,钾电流已经显现出某些基本作用。在成熟的听觉和前庭神经元中,延迟整流钾电流I(K)是动作电位快速复极化所必需的。在紧张性放电的听觉神经元中,瞬时外向整流钾电流I(A)决定了放电模式。在相位性放电的听觉神经元和一些发育中的前庭神经元中发现了一种延迟整流样电流I(DS),其激活阈值较低,它将放电限制为一个或几个尖峰,也可能有助于形成短时兴奋性突触后电位(EPSP)。此外,I(DS)将动作电位产生的阈值设定得相当高,这可能会阻止相位性放电细胞的自发放电。在发育过程中,一些钾电导会逐渐获得和丧失,这表明存在发育调控。由于二阶听觉和前庭神经元的膜特性存在相似性,对一个系统中放电模式及其潜在机制的研究应有助于揭示另一个系统的基本特性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验