Suppr超能文献

大变形下红细胞细胞骨架的模拟。II. 微吸管抽吸

Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration.

作者信息

Discher D E, Boal D H, Boey S K

机构信息

University of Pennsylvania, Philadelphia 19104-6315, USA.

出版信息

Biophys J. 1998 Sep;75(3):1584-97. doi: 10.1016/S0006-3495(98)74076-7.

Abstract

Coarse-grained molecular models of the erythrocyte membrane's spectrin cytoskeleton are presented in Monte Carlo simulations of whole cells in micropipette aspiration. The nonlinear chain elasticity and sterics revealed in more microscopic cytoskeleton models (developed in a companion paper; Boey et al., 1998. Biophys. J. 75:1573-1583) are faithfully represented here by two- and three-body effective potentials. The number of degrees of freedom of the system are thereby reduced to a range that is computationally tractable. Three effective models for the triangulated cytoskeleton are developed: two models in which the cytoskeleton is stress-free and does or does not have internal attractive interactions, and a third model in which the cytoskeleton is prestressed in situ. These are employed in direct, finite-temperature simulations of erythrocyte deformation in a micropipette. All three models show reasonable agreement with aspiration measurements made on flaccid human erythrocytes, but the prestressed model alone yields optimal agreement with fluorescence imaging experiments. Ensemble-averaging of nonaxisymmetrical, deformed structures exhibiting anisotropic strain are thus shown to provide an answer to the basic question of how a triangulated mesh such as that of the red cell cytoskeleton deforms in experiment.

摘要

红细胞膜血影蛋白细胞骨架的粗粒度分子模型在微量移液器吸液法对全细胞的蒙特卡罗模拟中呈现。在更微观的细胞骨架模型(在一篇相关论文中提出;Boey等人,1998年。《生物物理杂志》75:1573 - 1583)中揭示的非线性链弹性和空间效应,在此通过两体和三体有效势被如实地体现。系统的自由度数量因此被减少到一个计算上易于处理的范围。针对三角化细胞骨架开发了三种有效模型:两种模型中细胞骨架无应力,有或没有内部吸引相互作用,第三种模型中细胞骨架在原位被预加应力。这些模型被用于对微量移液器中红细胞变形的直接有限温度模拟。所有三种模型与对松弛的人类红细胞进行的吸液测量结果都显示出合理的一致性,但仅预加应力模型与荧光成像实验的结果最为吻合。因此,对表现出各向异性应变的非轴对称变形结构进行系综平均,为诸如红细胞细胞骨架的三角化网格在实验中如何变形这一基本问题提供了答案。

相似文献

1
Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration.
Biophys J. 1998 Sep;75(3):1584-97. doi: 10.1016/S0006-3495(98)74076-7.
2
Direct measures of large, anisotropic strains in deformation of the erythrocyte cytoskeleton.
Biophys J. 1999 Aug;77(2):853-64. doi: 10.1016/S0006-3495(99)76937-7.
3
Simulations of the erythrocyte cytoskeleton at large deformation. I. Microscopic models.
Biophys J. 1998 Sep;75(3):1573-83. doi: 10.1016/S0006-3495(98)74075-5.
5
Temperature transitions of protein properties in human red blood cells.
Biophys J. 1998 Dec;75(6):3179-83. doi: 10.1016/S0006-3495(98)77759-8.
6
Molecular maps of red cell deformation: hidden elasticity and in situ connectivity.
Science. 1994 Nov 11;266(5187):1032-5. doi: 10.1126/science.7973655.
7
Remodeling the shape of the skeleton in the intact red cell.
Biophys J. 1996 Feb;70(2):1036-44. doi: 10.1016/S0006-3495(96)79649-2.
8
Cytoskeleton influence on normal and tangent fluctuation modes in the red blood cells.
Phys Rev Lett. 2006 Jun 23;96(24):248102. doi: 10.1103/PhysRevLett.96.248102. Epub 2006 Jun 22.
9
An elastic network model based on the structure of the red blood cell membrane skeleton.
Biophys J. 1996 Jan;70(1):146-66. doi: 10.1016/S0006-3495(96)79556-5.

引用本文的文献

1
Dissipative Particle Dynamics Models of Encapsulated Microbubbles and Nanoscale Gas Vesicles for Biomedical Ultrasound Simulations.
ACS Appl Nano Mater. 2025 Aug 4;8(32):16053-16070. doi: 10.1021/acsanm.5c02783. eCollection 2025 Aug 15.
2
A Computationally Efficient Viscoelastic Eukaryotic Cell Model.
Ann Biomed Eng. 2025 Jun 19. doi: 10.1007/s10439-025-03772-5.
3
Dynamic mechanisms for membrane skeleton transitions.
J Cell Sci. 2025 Feb 15;138(4). doi: 10.1242/jcs.263473. Epub 2025 Feb 28.
4
Dynamic mechanisms for membrane skeleton transitions.
bioRxiv. 2024 May 2:2024.04.29.591779. doi: 10.1101/2024.04.29.591779.
6
Effect of constitutive law on the erythrocyte membrane response to large strains.
Comput Math Appl. 2023 Feb 15;132:145-160. doi: 10.1016/j.camwa.2022.12.009. Epub 2023 Jan 3.
7
Effective cell membrane tension protects red blood cells against malaria invasion.
PLoS Comput Biol. 2023 Dec 4;19(12):e1011694. doi: 10.1371/journal.pcbi.1011694. eCollection 2023 Dec.
8
Characterizing viscoelastic properties of human melanoma tissue using Prony series.
Front Bioeng Biotechnol. 2023 Apr 6;11:1162880. doi: 10.3389/fbioe.2023.1162880. eCollection 2023.
9
Molecular and cellular level characterization of cytoskeletal mechanics using a quartz crystal microbalance.
Cytoskeleton (Hoboken). 2023 May-Jun;80(5-6):100-111. doi: 10.1002/cm.21752. Epub 2023 Mar 24.
10

本文引用的文献

1
MECHANICAL PROPERTIES OF THE RED CELL MEMBRANE. I. MEMBRANE STIFFNESS AND INTRACELLULAR PRESSURE.
Biophys J. 1964 Mar;4(2):115-35. doi: 10.1016/s0006-3495(64)86773-4.
2
Elasticity of semiflexible biopolymer networks.
Phys Rev Lett. 1995 Dec 11;75(24):4425-4428. doi: 10.1103/PhysRevLett.75.4425.
3
Negative Poisson ratio in two-dimensional networks under tension.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1993 Dec;48(6):4274-4283. doi: 10.1103/physreve.48.4274.
4
Topology changes in fluid membranes.
Phys Rev A. 1992 Sep 15;46(6):3037-3045. doi: 10.1103/physreva.46.3037.
5
Simulations of the erythrocyte cytoskeleton at large deformation. I. Microscopic models.
Biophys J. 1998 Sep;75(3):1573-83. doi: 10.1016/S0006-3495(98)74075-5.
6
Reversible unfolding of individual titin immunoglobulin domains by AFM.
Science. 1997 May 16;276(5315):1109-12. doi: 10.1126/science.276.5315.1109.
7
Dynamic strength of molecular adhesion bonds.
Biophys J. 1997 Apr;72(4):1541-55. doi: 10.1016/S0006-3495(97)78802-7.
8
Kinematics of red cell aspiration by fluorescence-imaged microdeformation.
Biophys J. 1996 Oct;71(4):1680-94. doi: 10.1016/S0006-3495(96)79424-9.
10
An elastic network model based on the structure of the red blood cell membrane skeleton.
Biophys J. 1996 Jan;70(1):146-66. doi: 10.1016/S0006-3495(96)79556-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验