Discher D E, Boal D H, Boey S K
University of Pennsylvania, Philadelphia 19104-6315, USA.
Biophys J. 1998 Sep;75(3):1584-97. doi: 10.1016/S0006-3495(98)74076-7.
Coarse-grained molecular models of the erythrocyte membrane's spectrin cytoskeleton are presented in Monte Carlo simulations of whole cells in micropipette aspiration. The nonlinear chain elasticity and sterics revealed in more microscopic cytoskeleton models (developed in a companion paper; Boey et al., 1998. Biophys. J. 75:1573-1583) are faithfully represented here by two- and three-body effective potentials. The number of degrees of freedom of the system are thereby reduced to a range that is computationally tractable. Three effective models for the triangulated cytoskeleton are developed: two models in which the cytoskeleton is stress-free and does or does not have internal attractive interactions, and a third model in which the cytoskeleton is prestressed in situ. These are employed in direct, finite-temperature simulations of erythrocyte deformation in a micropipette. All three models show reasonable agreement with aspiration measurements made on flaccid human erythrocytes, but the prestressed model alone yields optimal agreement with fluorescence imaging experiments. Ensemble-averaging of nonaxisymmetrical, deformed structures exhibiting anisotropic strain are thus shown to provide an answer to the basic question of how a triangulated mesh such as that of the red cell cytoskeleton deforms in experiment.
红细胞膜血影蛋白细胞骨架的粗粒度分子模型在微量移液器吸液法对全细胞的蒙特卡罗模拟中呈现。在更微观的细胞骨架模型(在一篇相关论文中提出;Boey等人,1998年。《生物物理杂志》75:1573 - 1583)中揭示的非线性链弹性和空间效应,在此通过两体和三体有效势被如实地体现。系统的自由度数量因此被减少到一个计算上易于处理的范围。针对三角化细胞骨架开发了三种有效模型:两种模型中细胞骨架无应力,有或没有内部吸引相互作用,第三种模型中细胞骨架在原位被预加应力。这些模型被用于对微量移液器中红细胞变形的直接有限温度模拟。所有三种模型与对松弛的人类红细胞进行的吸液测量结果都显示出合理的一致性,但仅预加应力模型与荧光成像实验的结果最为吻合。因此,对表现出各向异性应变的非轴对称变形结构进行系综平均,为诸如红细胞细胞骨架的三角化网格在实验中如何变形这一基本问题提供了答案。