Suppr超能文献

Activation and oligomerization of aspartylglucosaminidase.

作者信息

Saarela J, Laine M, Tikkanen R, Oinonen C, Jalanko A, Rouvinen J, Peltonen L

机构信息

University of Helsinki, Department of Medical Genetics and National Public Health Institute, Department of Molecular Genetics, Mannerheimintie 166, FIN-00300 Helsinki, Finland.

出版信息

J Biol Chem. 1998 Sep 25;273(39):25320-8. doi: 10.1074/jbc.273.39.25320.

Abstract

Secretory, membrane, and lysosomal proteins undergo covalent modifications and acquire their secondary and tertiary structure in the lumen of the endoplasmic reticulum (ER). In order to pass the ER quality control system and become transported to their final destinations, many of them are also assembled into oligomers. We have recently determined the three-dimensional structure of lysosomal aspartylglucosaminidase (AGA), which belongs to a newly discovered family of homologous amidohydrolases, the N-terminal nucleophile hydrolases. Members of this protein family are activated from an inactive precursor molecule by an autocatalytic proteolytic processing event whose exact mechanism has not been thoroughly determined. Here we have characterized in more detail the initial events in the ER required for the formation of active AGA enzyme using transient expression of polypeptides carrying targeted amino acid substitutions. We show that His124 at an interface between two heterodimers of AGA is crucial for the thermodynamically stable oligomeric structure of AGA. Furthermore, the side chain of Thr206 is essential both for the proteolytic activation and enzymatic activity of AGA. Finally, the proper geometry of the residues His204-Asp205 seems to be crucial for the activation of AGA precursor polypeptides. We propose here a reaction mechanism for the activation of AGA which could be valid for homologous enzymes as well.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验